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WEEK 1

8th to 10th September

Topic 1a: Review of Linear Regression

Review of Linear Regression (Stat 331/371)

The Model Fitting Process

0. Exploratory Data Analysis.

1. Model Specification — Select a probability distribution for the response variable and an equation
linking the response to the explanatory variables.

2. Estimation of the parameters of the model.
3. Model checking — How well does the model fit the data?

4. Inference — Interpret the fitted model, calculate confidence intervals, conduct hypothesis tests.

See Dunn & Smyth Chapters 2 & 3 or your Stat 331 notes for a thorough review.
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Example: Dobson’s Birthweight Data
Dobson’s Birthweight Data
For n = 24 babies, we have observed:
* Y, = birthweight for baby ¢ (in grams).
* 1;; = sex of baby i (= 0 female, = 1 male).
* 1;o = gestational age (in weeks) of baby i.

We wish to model the relationship between the explanatory variables and the birthweight.

0. Exploratory Data Analysis

Dobson's Birthweight Data
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1. Model Specification
Notation
For each subjecti = 1,2, ..., n, we have:
* Y; = random variable representing the response.

e x; = (1,241,...,2) vector of explanatory variables.
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Specification for Multiple Linear Regression

* Y; are independent N (y;, 0%) random variables.

* Regression equation links the response to the explanatory variables:
ElY;] = pi = Bo + B1zi1 + -+ + BpTip = x; B
* Putting these together, our regression model is:
Y, = Bo + frzin + -+ Bpip + &5 where Eiifi\(’iN(OaU2)

* Alternatively, we can write our linear regression model in matrix form as:

Y=XpB+e
where
Y L @ coc @iy Bo &1
Y, 1 291 -+ @ B1 €2
Y = 9 X = . 9 =] s e =
Yn 1 Tnl znp ﬂp En
and

2. Estimation/Model Fitting
Least Squares

We wish to minimize the expression:

n n

S(B) = Z(yi —9:)% = Z(yz —(Bo + frzin +--- + ﬁpxip)>2

i=1 =1

The least squares estimates (L.SE) are the solutions to the equations:
oS £
B =2 Z;(yz — (Bo+ Brxir + - + BpTip))

o

aB; 22%‘ (vi — (Bo + Brzir + - - - + BpTip))

=1
Maximum Likelihood Estimation

The likelihood function for 3 is:

n

£(859) = T] <omg 0] - 552 (s~ 7 )7}

i=1
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The log-likelihood function for 3 is therefore:

{Biw) = 3~ ow2r0?) — 50 (v - 21 9)’)

i=1

1 n
=—3 Iog (2ma?) 2—2: — azTﬁ

We find the maximum likelihood estimate (MLE) of 8 by maximizing ¢(83; y) treating o as fixed.

* Regression estimates: For Linear Regression, the LSE and MLE of 3 are the same:

B=(X"X)"'XTY  provided (X X) is full rank

Fitted values: Y X,B or §; = ﬁo + leil + -+ Bpxw

Residuals: 7 = (yi - Ql)

* Variance estimates:
1 n
— An unbiased estimate of 02 is: 6> = ———— ) " #7.
n—(p+1) 4
- An estimate of the variance of 3 is: V(8) = 62(X T X)~!

Example: Dobson’s Birthweight Data
Dobson’s Birthweight Data
For n = 24 babies, we have observed:
* Y, = birthweight for baby ¢ (in grams).
* 1;; = sex of baby i (= 0 female, = 1 male).
* 1;o = gestational age (in weeks) of baby i.

We wish to model the relationship between the explanatory variables and the birthweight.

o Assume: Y; % N (i, 02).
* Consider a multiple linear regression model:

Y = Bo + frxin + Bazio + €

Example: R Code

age <- c(40, 38, 40, 35, 36, 37, 41, 40, 37, 38, 40, 38, 40,
36, 40, 38, 42, 39, 40, 37, 36, 38, 39, 40)

birthw <- c(2968, 2795, 3163, 2925, 2625, 2847, 3292, 3473, 2628,
3176, 3421, 2975, 3317, 2729, 2935, 2754, 3210, 2817, 3126,
2539, 2412, 2991, 2875, 3231)

sex <- as.factor(c(rep("M", 12), rep("F", 12)))
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# Exploratory Data Analysis

plot(age, birthw, pch = 1 + 18 * as.numeric(sex == "F"), ylab = "Birthweight",
xlab = "Gestational Age", main = "Dobson's Birthweight Data")

lines(lowess(agel[sex == "M"], birthw[sex == "M"]))

lines(lowess(age[sex == "F"], birthw[sex == "F"]), lty = 2)

legend("bottomright", legend = c("Male", "Female"), pch = c(1,
19), Lty = c(1, 2))
# Model 1: Main Effects Linear Regression Model
ml <- lm(birthw ~ sex + age)
summary (m1)
plot(age, birthw, pch = 1 + 18 * as.numeric(sex == "F"), ylab = "Birthweight",
xlab = "Gestational's Birthweight Data", main = "Fitted Regression Lines (m1)")
abline(m1$coeff[1] + m1$coeff[2], m1$coeff[3])
abline(m1$coeff[1], mi$coeff[3], Lty = 2)
# Residual Plots
plot(mi$fitted.values, rstandard(ml), main = "Residuals vs Fitted Values",
ylim = ¢(-2.5, 2.5), ylab = "Standardized Residuals", xlab = "Fitted Values")
abline(h = @)
abline(h = 1.96, lty = 3)
abline(h = -1.96, lty = 3)
lines(lowess(m1$fitted.values, rstandard(m1)), col = "red")
qgnorm(rstandard(mi))
abline(o, 1)

Example: R Output

summary (m1)

Call:
Im(formula = birthw ~ sex + age)
Residuals:

Min 1Q Median 30 Max

-257.49 -125.28 -58.44 169.00 303.98

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -1773.32 794.59 -2.232 0.0367 *
sexM 163.04 72.81 2.239 0.0361 *
age 120.89 20.46  5.908 7.28e-06 **x*
Signif. codes: @ '**x' 0.001 'xx' 0.01 'x' .05 '.' .1 ' ' 1

Residual standard error: 177.1 on 21 degrees of freedom
Multiple R-squared: 0.64,Adjusted R-squared: 0.6057
F-statistic: 18.67 on 2 and 21 DF, p-value: 2.194e-05
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Interpretation of Regression Parameters

The main effect multiple linear regression model:
Y; = Bo + Brwir + Powia +ei  where g; X N(0,07)

So the expected value of the response is:

ElY:] = Bo + Bizi1 + Boxio

* To interpret [, set x;; = x;0 = 0:
E[Y:] = Bo + B1(0) + B2(0) = Bo
Bo = Expected birthweight of female baby (x;; = 0) born a gestational age zero (z;2 = 0).
* To interpret 3, consider the difference in the model with x;; = 1 versus z;; = 0 as seen in Table 1.
Y]

[
1 @ 50 + B1(1) + Bawio
0  x2  Bo+B1(0)+ Pazio

A

Table 1: Interpretation of ;.

Til T2 E

(1 = Expected change in birthweight for male babies (x;; = 1) versus female babies (x;; = 0) at a fixed
gestational age.

* To interpret (85 consider the difference in the model with x;5 + 1 versus x;- as seen in Table 2.

Tl Ti2 E[Yz]

z1 x2+1  fo+ Bz + Ba(zia + 1)

x1 T2 Bo + Bizi1 + Bozwio
Ba

Table 2: Interpretation of 5.

(B2 = Expected change in birthweight associated with a one unit increase in gestational age (x;2) adjusted

for sex.
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Fitted Regression Lines (m1)
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3. Model Checking

If the model provides a good fit to the data then asymptotic theory tells us that we should expect that the

Standardized Residuals: 4 »
di = ———— ~ N(0,1 (approximately)
52 (1 — huy) (0,1) PP y

Note that h;; is the (i,7) elementof H = X (X T X)7 !XT,
We visually check this by examining residual plots such as:

1. Standardized residuals versus the fitted values.

2. Standardized residuals versus the explanatory variable(s).

3. Normal probability plot (QQ plot) of the standardized residuals.
4. Added variable plots.
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Standardized Residuals

Residuals vs Fitted Values
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4. Inference
Under suitable assumptions, the fitted regression parameters are asymptotically normally distributed:
B ~MVN(B,0*(X"X)™")
Bj ~ N(Bj,0%v;5)
Note that v;; is the (j, j) element of (X " X)L

Confidence interval for (3

Bj +1.964/02v;;

Since o2 is generally unknown, we replace it with an unbiased estimate 52 and use sTa(Bj) = /6%vj;.

Bj + tn—p—l,a/QS/é(Bj)

Hypothesis Tests for 3;

To test:
Ho: Bj = B vs Ha: B; # B}

we use the ¢-statistic: .
,_bi-8
se(f;)

10
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which has a ¢,,_,,_; distribution when Hy is true. That is, we reject Hy if [t| > t,,_,_1,0/2-

Example: Hypothesis Test and Confidence Interval

Estimate Std. Error t value Pr(>|t])
(Intercept) -1773.322 794.586 -2.232 0.037
sexM 163.039 72.808 2.239 0.036
age 120.894 20.463 5.908 0.000

By =+ tas_sse(B1) = 163.039 & 2.08(72.808) = (11.60, 314.48)

* After adjustment for gestational age, male babies are on average 163.04 g heavier than female babies. A
95 % confidence interval for this estimate is (11.60, 314.48).

* We reject the null hypothesis that §; = 0:
p-value = P(|t24,2,1‘ > |t*|) = 2P(t21 > 2239) = 2(1 — P(tzl < 2239)) = 0.036 < 0.05

* We also reject the null hypothesis that 85 = 0 since p < 0.001.

Example: Interaction Model
¢ Is the rate of increase of birthweight with gestational age the same for boys as for girls?

Y = Bo + Prxi1 + Baziz + BaxinTio + &5
m2 <- lm(birthw ~ sex * age)
round (summary (m2) $coeff, 3)

Estimate Std. Error t value Pr(>|t]|)
(Intercept) -2141.667 1163.601 -1.841 0.081

sexM 872.994 1611.331 0.542 0.594
age 130.400 29.998  4.347 0.000
sexM:age -18.417 41.756 -0.441 0.664

* What is the interpretation of 33?

Limitations of Linear Regression

Linear regression models can be very useful but may not be appropriate to use when:
* We cannot assume Y is normally distributed.
— Binary data (Y =0orY = 1).
- Countdata (Y =0,1,2,3,...).
* The variance of Y depends on the mean u.
Generalized Linear Models (GLM) extend the linear regression framework to address both of these issues.
* Normal/Gaussian linear regression is a special case of GLM.

* Inference based on maximum likelihood methods (review next — 431 Appendix, Stat 330 notes).

WEEK 2
13th to 17th September
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Topic 1b: A Brief Review of Likelihood Methods

Likelihood Methods for Scalar Parameters

Setup

* Y is a random variable with a probability density or mass function f(y | ¢), where § € Q is a
continuous parameter.

¢ The true value of 8 is unknown

* We wish to make inferences about 6 (i.e., we may want to estimate 6, or carry out tests of hypotheses
regarding 6).

Today’s material: Appendix Al & A2 of Stat 431 course notes, Dunn & Smyth Chapter 4, Stat 330 notes.

Likelihood Function

The Likelihood function is any function which is proportional to the probability of observing the data you
actually obtained:
LO]y)=cPY =y|0)=cf(y|0)

¢ is a proportionality constant which may be any positive function that does not depend on 6.
L(0 | y) contains all the information regarding 6 from the data.
L(0 | y) ranks the parameter values of their consistency with the data.

Since £(0 | y) is defined in terms of the random variable y, it is itself a random variable.

Maximum Likelihood Estimator

For the purposes of estimation we typically want to find the parameter value that makes the observed data
the most likely (hence the term maximum likelihood).

The maximum likelihood estimator (MLE) of 6 is the value 0 that maximizes the likelihood function, that

1S:
LO|y)=LO|y) VOeQ

Estimation is a simple optimization problem.

Equivalently, since the log function is monotonic, § maximizes the log-likelihood function: £(f | y) =
Iog(£(9 | y))

Often it is easier to work with (6 | y) rather than £(6 | y).

For simplicity drop the y and use £(6) = L(0 | y).

Other Important Functions

£(6) = log(L(8)) be the log-likelihood function.
S(0) = ¢'(0) be the first derivative of the log-likelihood function which is called the Score function.

1(0) = —¢"(0) be the negative second derivative of the log-likelihood function which is called the Informa-
tion function.

Z(6) = E[1(09)] be the Expected information function.
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* R(#) = L£(#)/L(0) be the Relative likelihood function, which is the likelihood function standardized by its
maximum value so that the relative likelihood will have a maximum value of 1 (0 < R(#) < 1).

o 7(0) = log(L(6)/L(H)) be the log relative likelihood function which will have a maximum value of 0.
(0) = log(L(6)/L(0)) g

Maximum Likelihood Estimation

* Want 6 that maximizes ¢(#), or equivalently solves S(6) = 0.

Sometimes S(0) = 0 can be solved explicitly (easy in this case), but often we must solve iteratively.

Check that the solution corresponds to a maxima of ¢() by verifying the value of the second derivative at
0 is negative, or: . .
I(0) = —¢"(0) > 0

Should also check if there are any values of 6 at the edges of (2 that give a local maxima of ¢(6).

* Invariance property of MLEs: if g(f) is any function of the parameter 6, then the MLE of ¢(6) is g(6).

Example: Poisson Distribution
Example: Poisson Distribution
Let Y7,Y5,...,Y, be iid Poisson random variables with

@Yie—?

;!

flyi | 0) = , 0>0,1=0,1,2,...

with unknown parameter 6. Find the MLE of 6.

¢ Likelihood function:

n " QY expf — Ziyix —n
£(9|y):Hf(yi‘9):He exp{—0} ¢ exp{—nd}

i1 i1 yi! [1; vi!

* log-likelihood function:
€01 y) = (3 vi) log(6) — no — > (log(y))

¢ Score function:
ds

1
SO)=F5 =g v n
e Maximum likelihood estimate:

Zyi

n

OZ%Zyl—nzéz =y

* Second derivative test using Information function:

1(9)——d72€—iz >0 V9>0
T T e Y
Confirms that § = § is the maximum likelihood estimate.

* See Appendix A2 for a Binomial example.

Example: Topical cyclones
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Tropical cyclones

Number of tropical cyclones in Northeastern Australia for the 13 successive seasons 1956-57 through
1968-69 (Dobson §1.6.5)

10 11 12 13

Season 1 2 9
5 4 2 6 7 4

3 4 5 6 7 8
Cyclones 6 4 6 6 3 12 7

* Let Y; = number of cyclones in season 4.
e Assume the Y;’s are iid Poisson random variables with unknown parameter 6.

¢ The maximum likelihood estimate of @ is:

Sy T2
= — =15.538
n 13

0=y=

Example: Plot of log relative likelihood function

r(6) = £(8) — £(6) = (Z yi> Iog(g> — (0 —0)

log relative likelihood
-8 -6

-10

Newton Raphson Algorithm

* Sometimes we need to solve S(0) iteratively.
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* Taylor Series expansion of a differentiable function f(x):

f'(a) f"(a)
1! 2!

f@) = fla) + =~ (@ —a)+ (@—a)’+ -+ == —a)" +

* Now suppose we wish to find 6, the root of S (9) =0, and 6, is a guess that is “close to 6.
* Consider the Taylor series expansion of S() about 6;:

5"(6o)
2!

50) = 5(00) + 2% (9 gy +

- (6—00)>+ -

For |6 — 6| small, we can drop the second and higher order terms and to a good approximation we have:
S(0) = S(6o) + S'(00)(0 — o)
5(0) ~ S(6o) — 1(60)(0 — bo)

* We are approximating S() with a linear function that has the same value and slope as S() at § = 6,.
Then at 0 = é,

* This suggests a revised guess for 0 is:

0y = 0o+ I~ (60)S(0o)

Newton Raphson Algorithm for finding the MLE

We wish to maximize the function () by solving S(6) = 0.
* Begin with an initial estimate 6.
* [teratively obtain estimates 61, 65, 03, . . . using:

i1 = 0; + T71(0:)5(6;)

* Iteration should continue until ;1 ~ 6;. (i.e., |§;11 — 0;| is within a specified tolerance).
* Thenset§ = 6;,,.

* To determine if it is a maxima of £(6), check that I(4) > 0.

Example: Newton Raphson for Cyclone Data

y <_ C(67 5’ 4! 6) 67 3’ 127 7? 4! 2! 6) 77 4)
Score <- function(theta, y) {
sum(y)/theta - length(y)
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}

Info <- function(theta, y) {
sum(y)/(theta*2)

}

theta.old <- @
theta.new <- 5
track <- c(theta.new, Score(theta.new, y))
while ((theta.new - theta.old)*2 > 10*(-3)) {
theta.old <- theta.new
theta.new <- theta.old + Score(theta.old, y)/Info(theta.old,

y)
track <- rbind(track, c(theta.new, Score(theta.new, y)))

}

track

C,1] [,2]

track 5.000000 1.400000e+00
5.486111 1.240506e-01
5.537967 1.161567e-03
5.538461 1.037690e-07

mean(y)

[1] 5.538462

Inference for Scalar Parameters
* So far we have discussed estimation of 6.
» Next, we want to conduct inference (carry out hypothesis tests and construct confidence intervals).
 Several techniques are available, all based to varying degrees on the likelihood function.
Useful asymptotic distributional results
* (log) Likelihood ratio statistic: —2log(R(6)) = —27(0) ~ x,)-
* Score statistic: (S(G))z/I(é’) ~ X{y-
* Wald statistic: (§ — 6)21() ~ X?1)-

(approximations improve as sample size increases)

Confidence Intervals
Suppose we want a 100(1 — «) % confidence interval for 6.

* The Likelihood ratio (LR) based pivotal gives a confidence interval:

{9 L —20(0) < X3y (1 - a)}
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The Wald-based pivotal gives an interval:

{9 (0 - 0)1(0) < X3y (1 - a)}

where X%1) (1 — «) is the upper « percentage point of the X?m distribution.

The Wald-based interval should actually be familiar to you:

Recall if Z ~ N(0,1) then Z% ~ x7).

So we have:

{9 (0 - 0)21(0) < X3y (1—«a }

{ ‘ 11/2(9)‘ < Z(17a/2)}
{ (9 e) < Iy a/z)}
=0+ 20 oI 3(0)

Example: LR Confidence Interval for Cyclone Data

Likelihood Ratio based interval: {0 :=2r(0) < X%l)(l - a)}.

* Tor the Poisson distribution 6 = 7

* To find the interval find the roots of —2r(¢) — x¢,,(1 — a).

ybar <- mean(y)
n <- length(y)
LRest <- function(theta, ybar, n) {
-2 * (n * ybar * log(theta/ybar) - n x (theta - ybar)) -
qchisq(@.95, 1)
3
uniroot(LRest, interval = c¢(3, ybar), ybar = ybar, n = n)$root

[1] 4.355715

uniroot(LRest, interval = c(ybar, 8), ybar = ybar, n = n)$root

[1] 6.918103

The likelihood ratio based 95 % confidence interval is (4.36,6.92).

This is the “standard” normal based confidence interval with se(d) = I~1/2(f).

since I(

>

) >

>0

17
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LR Based Confidence Interval
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Example: Wald Confidence Interval for Cyclone Data

Wald based interval: {9 S (0—0)1(0) < Xty(1 = a)}.
* For the Poisson distribution § = y and

A 1 ny
16) = 5 Y0 =2 -

<3

¢ So we solve:

6+1.96(1(0)) " = 5 +1.96(n/y) "'/
= 5.538462 = 1.96(0.652714)

= (4.2591, 6.8178)

The likelihood ratio based 95 % confidence interval is (4.36,6.92).
The Wald based 95 % confidence interval is (4.26,6.82).

18
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Wald Based Confidence Interval
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Testing Hypotheses

Ho: 0= 90 VS. HAZ 0 75 90.

¢ Likelihood ratio (LR) test:
p= IP’(X?U > —27‘(90))

¢ Score test: )
p=P(x% > (S(60))*/1(60))

¢ Wald test: . .
p= P(X%n > (0 — 90)21(9))
or

p= IP’(|Z| > |0 — 6o 1(9)>

Example: Hypothesis Tests for Cyclone Data
Suppose we wish to test whether there were an average of 5 cyclones per year
Hy: 0 =5vs. Hp: 0 # 5.

¢ Likelihood Ratio based test:

(0o =5) = ny log(f/) —n(b—y) =—-0.3641

19
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The p-value for this test is:
p=P(x%) > —2(5)) = P(x,) > 0.7282) = 03934

Therefore we do not reject Hy.

Notes on Asymptotic Inference
* Asymptotic results: approximation improves as sample size increases.
* Results are exact for a Normal linear model if 6 is the mean parameter and o2 is known.
* LR approach:

— Need to evaluate (log) likelihood at two locations.
— Not always a closed from solution for a CI.
— Usually the best approach.

* Score approach:

— Usually the least powerful test.
— Don’t actually need to find MLE to use.

* Wald’s approach:

— Always get a closed form solution for a CI.
— May not behave well for skewed likelihoods (transform?).

* All three are asymptotically equivalent!

Likelihood Methods for Parameter Vectors (A3)

Suppose 8 € (2 is a continuous p x 1 parameter vector indexing a probability density or mass function f(y | 6).
* £(0) is the Likelihood function.
* {(0) = log(L()) is the log-likelihood function.

* S(0) = % is the p x 1 Score vector.

__0%(e) - : :
e I(0) = — 547 55 is the p x p Information matrix.

* R(0) = L£(8)/L(8) is the Relative likelihood function.
* r(0) = Iog(ﬁ(G)/ﬁ(é)) = ((8) — £() is the log relative likelihood function.
* The Newton Raphson algorithm applies as before, but with vectors and matrices as follows:

011 = 0, + (1(6))'S(6)

* Again, we apply iteratively until we obtain convergence, but now check to see if I(8) is a positive definite
matrix.

* Analogs to the LR, Score and Wald results apply based on partitioning the Information matrix by 8 =
(a, B)T, where v is a p x 1 vector of nuisance parameters and 3 is a ¢ x 1 vector of parameters of interest:

_ _ Iaa(avﬂ) Iaﬂ(auB)
1=1@o = (s Bas)

2 . 2 . 2 :
where I, o (e, B) = —% ispxp, Ingla, B) = —% ispxgq, Iga(a,B) = —8;’% is ¢ X p, and
2 .
Igg(a, B) = —76,38827 isqg xq.
WEEK 3

20th to 24th September
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Topic 1c: Likelihood for Generalized Linear Models

Likelihood for Generalized Linear Models
Recall Stat 331/371: Assume Y; ~ N (u;, 0?) independently. For linear regression:
ElY]==/8
How can we do regression analysis if the distribution of Y; is not Normal?
1. Definition of the Exponential Family.

* Derivation of general likelihood results for the Score and Information.
* Application of general results to the Exponential Family.
* Definition of the canonical link.

* Poisson example.

2. Definition of a Generalized Linear Model.

The Exponential Family
Definition (Exponential Family)

Consider a random variable Y; with p.d.f. f(y; | 6;, ¢), 6; unknown, ¢ known. We say that the distribution
is a member of the exponential family if we can write the p.d.f. in the form:

flyi | 0i,0) = exp{(yiei_(b(ei))

e 0}

for some specific functions a;( - ), b( - ), and ¢( - ).

* The parameter 6; is called the canonical parameter.

* The parameter ¢, termed the scale/dispersion parameter, is constant and assumed to be known.

Likelihood for the Exponential Family

Consider a single observation y; from the exponential family.

¢ Likelihood:

£itn0 ) = o 9.0) = op{ L0 4 )
« Log-likelihood:
Ci(0:, ¢ | yi) = log(f(yi | 0:,9)) = W +e(yi | ¢)
¢ Score: o - b6
S0 =30, = "ate)
* Observed Information:
Loy = 24 _ (@)

* Fisher/Expected Info:
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Aside: General Results for the Score and Information

Fact: Probability density functions integrate to 1. Using this,

/f(yi|9i,¢)dyi=1

0 01
%/f(yi|9i7¢)dyi:%

0
/%f(yi | 0;,6) dy; = 0

When differentiating the log-likelihood we have:

1 0

F(yi | 6:,6) 06;
0 0
(yl | 91a¢) |Og( (yt ‘ 017¢)) 89 (yZ | 927¢)

i Iog( (yi | Hi,tzﬁ)) = f(yi | 0:,0)

06;

Substituting (2) into (1) we get:
[ $0161.0) 35 tog (7101 | 1,0)) s =0
[ 165,056 dy = 0
E[Si(6,)] = 0
since by definition E[g(X)] = / (@) f(z | 0) dz

Result # 1

The expectation of the score function is zero.

E[S;(0;)] =0
Differentiate (3) again:

o—/f il 00 0) - 77108 (us | 6,9)) d,

20
20, — 06;

02 0
0= [ gz 0wt 10| o1 00y + [ o7

82 ) 2
Oz/aoglog(f(yi | 05,6)) f (i | 0:,9) dyi+/(89 log (f(yi | ei,¢))) Fys | 05, 0) dy;

(;; log (f (v | 9i,¢)))21

/f Yi | 9i7¢)w|°g(f(yi | 65, 9)) dy;

0= [83; log(f (y¢|9¢,¢))] +E

Examining (4) we get:

(9, 087t ei,qﬁ)))Q

82
E[&g o (£ (v | ei,qs))} ‘E

[ I
Il
e}

(70016000 | £ 10200

22

Y]

(2

€))

Sub (2)

4
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Result # 2

The expectation of the score function squared is the expected information.
E[S:(6:)?] = E[L;(6;)] = Z;(6;)

Recall that Var(X) = E[X?] — (E[X )2 Using Results #1 and #2 we have:

Var(S(6;)) = E[S:(6:)?] — E[S;(6:)]
=Z7,(6;) — 02
= T,(6;)
Result # 3

The variance of the score function is the expected information:

Var(S;(6;)) = Z;(6;)

Applying these Results to the Exponential Family

E[Si(6:)] =0

Properties of the Exponential Family

For a random variable Y; with a distribution in the exponential family, ; unknown, ¢ known:

iti0 1) = 1011 000) = oo L 0D o )]

Mean and Variance for the Exponential Family
* Mean: E[Y;] =¥ (0;) = p;-

e Variance: Var(Y;) = 0" (0;)a;(¢)

V(p;) = b"(8;) is called the Variance function.

b"(0;) is a function of the canonical parameter ¢; and hence a function of the mean (mean-variance
relationship)

a;(¢) is a known function of the dispersion parameter ¢.

Often we can write a;(¢) = ¢/w; where w; is a weight.
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Link Functions

Definition (Link Function)
The link function g(yu;) relates the linear predictor 7; = = 3 to the expected value y; of the random
variable Y;.
9(ui) =m; == B
Definition (Canonical Link Function)
When Y; is a member of the exponential family we define the canonical link function to be:
g(p) =0, =n; =z; B

(i.e., canonical parameter = linear predictor)

Examples
Many well known distributions belong to the exponential family:

* Normal distribution: Y ~ N (1, 0%), 0% known.

1100 == eo{ -YTEEL ye(coaso)

* Poisson Distribution: Y ~ POI(\).

AVe A
flyl N = o y=0,1,2,...

* Binomial Distribution: Y ~ BIN(m, 7).

fly|m) = (?)ﬂy(l—w)m_y, y=0,1,....m

The Poisson Distribution
LetY;,i = 1,2,...,n be iid POI();).

)\:l.}ief)\i
flyi | N) = 1y, , v =0,1,2,...

7.

Show that the distribution of Y; is a member of the exponential family and find the mean, variance,
variance function and canonical link function.

Exponential Family: Full Disclosure

The definition of the exponential family used in the Stat 431 course notes is actually a special case of:



CONTENTS 25

Definition (General Exponential Family)

A distribution is a member of the General Exponential Family if it can be expressed as:

k
116) = exp{ Y- w0)(0) + 46) + hiv) |

for t1(y),. .., tx(y) real-valued function of y, and w; (), ..., wx (@) real-valued functions of the possibly
vector-valued parameter 6.

Random Sample from the Exponential Family

Now suppose Y;, ¢ = 1,2,...,n are iid with a distribution that is a member of the exponential family. Then:

£(0a¢|y):H (i | 0i, ) He {w+c(yz|¢)}

0,0 |y) = ZlOg (yi | iy 0 )):Z<(y19;:((§)(91))+0(y1¢))

In a regression context, we are 1nterested in estimating B under the link function:
T
9(pi) = =; B

where «; is a vector of explanatory variables for subject i = 1,2,...,n.

Generalized Linear Models
Definition (Generalized Linear Model (GLM))
A Generalized Linear Model (GLM) is composed of:

* The Random Component: The distribution of the iid response variables Y; is assumed to come from
a parametric distribution that is a member of the exponential family.

* The Systematic Component or linear predictor ; = =, B, a linear combination of explanatory
variables x; and regression parameters 3.

» The Link function that relates the mean of the distribution of Y; to the linear predictor through:

9(p) =mi =]

Topic Summary: Likelihood for Generalized Linear Models
1. Definition of the Exponential Family.

* Derivation of general likelihood results for the Score and Information.
* Application of general results to the Exponential Family.
* Definition of the canonical link.

* Poisson example.
2. Definition of a Generalized Linear Model.
Next Topic: Estimation for Generalized Linear Models.

Estimation of 8 from a GLM through Iteratively Reweighted Least Squares (IRWLS).
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Topic 1d: Estimation for GLMs

Generalized Linear Models
Definition
A Generalized Linear Model (GLM) is composed of:

1. The Random Component: The distribution of the response variables Y; is assumed to come from a
parametric distribution that is a member of the exponential family Systematic Component or linear
predictor ; = x, B, a linear combination of explanatory variables z; and regression parameters 3
that relates the mean of the distribution of Y; to the linear predictor through

g(w) =mi ==z, B

Estimation of 8 from a GLM through IRWLS
Consider the log-likelihood for a single observation from the exponential family:

) _ Yil; — b(9¢)

(0,9 | yi (0)

+c(yi; )

* (¢, is a function of #; (assume that ¢ is known).

* 1u; can be expressed in terms of §; through the mean:
i = b'(0;)

* 1), can be expressed in terms of y,; through the link function:
i = g(pi)

* [ can be expressed in terms of 1 through the linear predictor:
fclT B=mni

Thus, £;(6;, ¢ | y;) depends on 6;, so §; depends on y;, so ; depends on 7;, and so n; depends on ;. Therefore,

we will use the chain rule on:
609 = 1 (0s(stn3) )

The Score Vector

Using Maximum Likelihood to estimate 3, we must solve S(3) = 0,. Consider the j™® element of the score

vector:
ot Ol 00; Op; On;
dB;  00; Ou; On; 9B,

where

ol yi =0 (0;) oy — . /
= = since b'(0;) = u;
56, @) ) (6:) =4

-1
o B (am) - : (o) since yi; = V/'(0;), Var(u;) = b"(0;)ai(¢)

Opi 00; b"(6;) - Var(u;)
O = O (depends on selected link)
an; O,
p—1
5’7%‘ . T .
op, ~ " since @ B=n; = > a;fB,fori=1,....n

=0
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So we have
i yi—pi_ai(9) 6/%33
ap; ai(¢) Var(u;) on; "
2
Yi — pi (Opi\” Oni : Api On;
= ij Itiply by 1 =
Var(y;) (fm) o P Y = D0 ons
i
— ( ,uz)wl auz .T”
where w; = ——L5——. Note that generally % is easier to calculate than gi since we define the link as
Var(Y3)(g;5)? i 7
i = g(pa)-

With n iid observations, the j™ element of the score vector is:

n

on; .
Z@BJ Z —,ul)wza—m:c” forj=0,1,...,p—1

p=il

In vector form we can write:

on
S(B)=XW(y— —
(B8) (y-—moy v
where y = (y1,...,%n) " and p = (p1,...,4,) " aren x 1vectors, X = (x1,...,x,) is a p x n matrix, W
denotes the n x n diagonal matrix with W = diag(w, wa, ..., w,), o denotes an element-wise product, and
on _ (m Oz A )T
op Op1? Ou? " " "7 Op
Example: The Poisson Distribution (Problem 1.4)
LetY;, i =1,...,n be independent Poisson random variables with E[Y;] = \;. Suppose that associated

with each y; is a p x 1 vector of explanatory variables x;. A Poisson regression model with the canonical
link takes the form:

log(Ai) = Bo + Brzir + -+ + Bp-1Ti(p—1) = T, B

To answer the following you may either calculate the derivatives using standard methods, or use the
general results derived in class for the exponential family.

a. Write down the score vector for the regression coefficients 3.

Newton Raphson and Fisher Scoring

To solve S(B) = 0,, the Newton Raphson update equation is:

B+l = g 4 I—l(,@(r))s(g(r))
where I( -) is the observed information matrix.
* This requires us to find and repeatedly evaluate the Information I( - ) (possibly computational intensive).

* Fisher suggested using the expected information matrix Z( - ) rather than the observed information matrix.

The Fisher Scoring update equation is:

B(TH) _ B(r) _,’_Ifl(ﬂ(r))s(ﬂ(r))
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The Information Matrix

Consider the (j, k) element of the Information matrix:

0%¢;
085 OBk

o0 o,
0B 9B

Lk = —

NC R M T

= —(yi — ,)i w; omi zii| + 2w
- Yi 22 8ﬁk % 3/& iJ Lig Widik

Where the above holds since

Ou;  Owi On; Opy
Ne=p =B — = =
g(,uz) i Z; ﬂ aﬂk 8772 aﬁk 37)1 ik

Fisher Scoring

To get an element of the Expected/Fisher Information matrix:

02¢;
T —F|—
[ 98, wJ
9 on;
= [ (yi — )8 [ (3 )%] + l"uwﬂ%k]
O
35k [ ( )x”] — )] + T wizk
= TijWiTik since E[(yl — /J,l)} =0

Therefore, for n observations we can write:

Ijk = Z-T'zywzzzk = (XWXT)jk

i=1

1

where again, W = diag(w1, ws, ..., w,) and w; = Vv (T
) (F

When is Fisher Scoring Equivalent to Newton Raphson?

Fisher Scoring is equivalent to Newton Raphson when the expected information matrix is equal to the observed
information matrix. Recall:

0 on;
Lk = —(ys — Mi)aTi’k [wz (82)5%} + T W Tk
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Now examine:

1 8;% 2
w; =
Var(Y;) \ On;

v (ar) () ' ”

= since Var(Y;) = b"(0;)a;

a0 )<5m o, (¥) = 7(6:)ai(9)

1 00; (O (O nigy . OV(0:i) O

"~ ai(9) O (3m> (am) and "(0:) = o00; 06,
1 Opi

= under the canonical link 6; = 7;

ai(¢) on;

So under the canonical link:

We then have:

0 on;
Lig = —(yi — pi) B {m( b )xw] +TiWiik = TijwiTix = Lk

Therefore under the canonical link, the expected information matrix equals the observed information matrix and
Fisher Scoring is equivalent to Newton Raphson.

Iteratively Reweighted Least Squares (IRWLS)
Why is this called the iteratively reweighted least squares? The Fisher Scoring update equation:
B+l = glr) 4 71 (3<r>)5(g<r>)

can actually be rewritten as:
AU = [XW(a7)XT] X W (B)=(5)

* See manipulation in Section 1.2.3 of course notes with: z =n+ (y — u) o 8Z

* Same form as weighted LS estimate of 8 with dependent variable z(3(")) and weight matrix W (8(").

Summary

* When Y; come from a distribution in the exponential family we can use the theory of Generalized Linear
Models to fit the regression equations of the form:

g(ps) == B

* The link function g( - ) may be the canonical link, but its choice should come from model interpretation
and fit.

* Can use IRWLS to estimate the regression parameters 3 from any GLM based on general forms for I(3)
and S(8).

* Practice: Assignment 1 & Chapter 1 review problems.
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Example: The Poisson Distribution (Problem 1.4)

LetY;, i =1,...,n be independent Poisson random variables with E[Y;] = A;. Suppose that associated
with each y; is a p x 1 vector of explanatory variables x;. A Poisson regression model with the canonical
link takes the form:

log(As) = Bo + Brzir + -+ + Bp—1Zi(p_1) = T; B

To answer the following you may either calculate the derivatives using standard methods, or use the
general results derived in class for the exponential family.

a. Write down the score vector for the regression coefficients 3.

b. Write down the observed and expected information matrix for 8. Are they the same or different?
Why?

c. What is the form of the weight function? What types of observations will have the largest and
smallest weights?

Topic 2a: Binary Data: Estimation of the Odds Ratio

1. Definition of the Odds Ratio as a measure of association.

2. Likelihood based estimation of the Odds Ratio.

3. Inference for the Odds Ratio (Wald based confidence interval).
4,

Example: Prenatal Care.

2.1 Introduction to the Analysis of Binary Data
* Outcome/Response: Binary (yes/no, diseased/healthy).
* Explanatory Variable: Binary (yes/no, treatment/control).

e Use a 2 x 2 table to summarize the data:

Disease
Present  Absent

Treatment U1 mip —yY1 | T
Control Yo mo — Yo | Mo
Ye Me — Ye Me

e Treat m; and my as fixed.

* Assume Y}, are independent binomial random variables:

Yy ~ BIN(myg, mx) where 0 < m, < 1fork=1,2
* 7, = P(response | group k).

Definition: Odds

How do we measure the association between treatment and response?
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Definition

The Odds is the ratio of the probability that an event occurs () to the probability that it does not occur:

™
Odds = 1

—

The odds is a one-to-one monotonically increasing function of 7 which takes on values on the non-negative
real line.

Measures of Association
Definition
The Odds Ratio is the ratio of the odds of an event occurring in one group to the odds of the event

occurring in another group:
71/(1 - 7T2)

Odds Ratio = ¢ = a )
Up) — 9

Definition
The Relative Risk is the ratio of the probability of an event occurring in one group versus another group:

0 . Vs
Relative Risk = —~
2

* In the case of a rare disease (i.e., when 7, and 75 are very small), then:
OR ~ RR

 This can be seen by noting that:

OR:z/J—ﬂl/(l_m):m(1_ﬁ2)zm~RR

_7'[-2/(1771—2) ) 1771'1 )
~1
* Interpretation of OR:
T = Ty —> OR=1 — equal risk
m > Ty = OR >1 = higher risk in group 1

m <mp => 0<OR<1 = higherriskin group 2
Odds Ratio Example Calculations

* m = 0.50, m = 0.25, so RR = 0.50/0.25 = 2 and OR = (0.50/0.50) /(0.25/0.75) = 3.
* m = 0.10, m = 0.05, so RR = 0.10/0.05 = 2 and OR = (0.10/0.90) /(0.05/0.95) = 2.11.

* m =0.25, m = 0.10, so RR = 0.25/0.10 = 2.5 and OR = (0.25/0.75) /(0.10/0.90) = 3.

2.2 (Likelihood Based) Estimation of the Odds Ratio

* Goal: Use Likelihood Theory to estimate OR = ¢ = %
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* Assumption: Y, ~ BIN(my, mx), k = 1,2 independently.

L(my,m2) =P(Y1 =y1,Y2 = yo | m1,72)
=P =y | m)P(Ya =y | m2)

“(2) o () o (=)
o (7“/(1 - ””)yl < = )yﬁyla — ) (L - )™

772/(1—71'2) 1—7‘&'2

Estimation of the Odds Ratio

* Since we want to estimate ), we can reparameterize using:

lelog(m/(l_m)>:|og(¢)7 92:|og< 2 )

7T2/(1—7T2) 1—7‘(’2

* Note that w1, 7 € (0,1) but 61,62 € (—o0, 0).
e Our reparameterization implies:

692 891 +02

T2 771:71+691+02

T 1+l

* Now the likelihood becomes:
7T1/(1 _ 71_1) Y1 o Y2+y1
1— Ml — m2
[,(7'('1,7T2)O( <7T2/(1_7r2) 1—7‘(‘2 ( 71'1) ( 7T2)
L(01,0) = (691)?,/1 (692)y1+y2(1 + 691+92)*m1(1 + 692)*7712

* Recall our goal was to estimate OR = 1) = 1.

)C(gl’ 92) _ (eel)yl (692)y1+y2(1 + 691+92)*m1(1 + 692)*7712
0(61,02) = 1161 + (y1 + y2)02 — my log(1 + €’ ) — my log(1 + €2)

ef1+02
-2

1 4 ef1+02
ef1+02 €92
S3(01,02) = y1 +y2 —ma (1+ea+e> 2 <1+69)

* Solving S(61,602) = 0 gives us the MLEs:

b, = Iog<y1/(m1 - yl)), b = Iog(y2>

Y2/ (m2 — y2) ma — Y2
* So by the invariance property of MLEs we have:

71 /(1 —71) Y1 Y2
ﬁQ/(l—ﬁQ)’ mq mo

)=

>
Il
|
>
|
|



CONTENTS 33

Example: Prenatal Care Data from Two Clinics
Consider the data below describing the relationship between the level of prenatal care and fetal mortality.

Level of Care | Died Survived | Total

Intensive 20 316 336
Regular 46 373 419

66 689 755

i oYM — ) o (yi(me —y2)\ L ((200BT3)
=l g(yz/(mz —y2)> = g<y2(m1 —yl)> | g<(46)(316)> 0-0670729

~ - 20)(373
OR = ¢ = Wlmz=v2) _ COIBT) o006

y2(m1 —y1) (46)(316)

Inference for the Odds Ratio
¢ In order to do inference we will need the Information Matrix:

Ly T 2
I1(64,0,) = L;i Iﬂ ,  where Ij; = fmaal,oz)
J

* Differentiating we have:

ef1+02
Iy =m (WM) =mymi (1 —m)

) = mym(1— )

ef1+02

(1 + 691-'1-92)2
691+92 692
t = (i) = im0 =m0+ ) = i1 ) a1 = )

Iig = Iy :ml(

Asymptotic Distribution of a Multidimensional MLE (A.3)

* We are interested in doing inference on ¢; = log(v)) while 65 can be viewed as a nuisance parameter.

* Recall the Wald Result for a scalar parameter 6 is (6 — 6)I(6) ~ 2.

Wald Result for a scalar parameter from a vector

For the vector 8 = (6;,0,) ", where 6, is a scalar parameter of interest:
A A A N1
(61— 01)* (I (01,02)) ~ ~ 3

asymptotically, where I'! is the (1,1) element of I-1(dy, ) (i.e., the inverse of the information at the
MLE) given by:
= (I11 — I12I2_21I21)71

* General result I is a p x p partitioned matrix.

— Information Matrix:
I, I
I(6,,05) =
(61,62) [121 I
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— Inverse Information Matrix:
. [11 112
I (01’ 02) = 721 22
where /' = (Ill — I12_[2_21I21)_1.
e Consider the 2 x 2 matrix case:

_la b 1 d b
A_[c d}:>A _adbc[c a]

All A12
|:A21 A22:|

where A = 4 = a—bd=tc)~L.

a=ta7a = (
Confidence Interval for the Odds Ratio

* We will use this result to find the confidence interval for 6; = log(¢)).

* First, we need to find I'(61,65).

= (I11 — 112]{21121)_1

2 _
(mﬂrl(l—ﬁl)) 1
= m17r1(1—7r1)—
m17r1(1—7r1)+m2772(1—7r2)

:< m17T1(1—7T1)m27T2(1—772) ) 1

m17r1(177r1)+m27r2(177r2)

1 1
m1771(1—7rl) TTL27T2(1—7T2)
1 1 1 1

mi1mq m1(1—7r1) Mmoo mg(l—’/TQ)

Confidence Interval for the Odds Ratio

* Now we can calculate I'1(6y, f,) using the invariance property of MLEs:

A A 1 1 1 1
I'(04,0,) =
(1’ 2) m17AT1 +7711(1—77‘1) +m2fr2 +m2(1—ﬁ2)
1 1 1 1
=— +

Y mi1 — Y ; ma — Y2

* Thus a Wald-based 95 % confidence interval for 6; = log(¢) is:

~ 1 1 1
01 £1.964/ — + + — +
Y1 my — Y Y2 ma — Y2

= (élLa élU)

* A 95% confidence interval for the Odds Ratio %) is:

(exp{éu}» eXP{élU})

Example: Prenatal Care Data from Two Clinics

34
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Example: Prenatal Care Data from Two Clinics

Level of Care | Died Survived | Total
Intensive 20 316 336
Regular 46 373 419
66 689 755
WA A A 1 1 1 1
I (91,92) = Var(91) = — 4+ — + — +— =0.07758465

20 316 46 373
95 % confidence interval for 6; = log(%)):

0y 4+ 1.961/I'(fy,05) = —0.6671 + 1.961/0.07758 = (—1.2130, —0.1211)

95 % confidence interval for the Odds Ratio 1):

exp{91 + 1.96\/[11(91,92)} = exp{—1.2130, —0.1211} = (0.2973,0.8859)

* Outcome: Fetal death vs Survival.
* Explanatory Variable: Level of Care: Intensive vs Regular.

~

— Using results from the previous section we have: ¢ = 0.51, and a 95 % confidence interval for 1) was
(0.30, 0.89).

» Additional Explanatory Variable: Clinic: A vs B.

Prenatal Care Data Stratified by Clinic

Clinic A Clinic B
Level of Care | Died Survived | Total | Died Survived | Total
Intensive 16 293 309 4 23 27
Regular 12 176 188 34 197 231
28 469 497 38 220 258

. zﬁA = 0.80, and a 95 % confidence interval for v, is (0.37,1.73).
. z[}B = 1.01, and a 95 % confidence interval for g is (0.33, 3.10).

* These results do not agree with the results from the pooled analysis on the previous slide.

Association Between Clinic and Level of Care

A B

Intensive | 309 27 | 336
Regular | 118 231 | 419

497 258 | 755

~

1 = 14.06, and a 95 % confidence interval for ¢ is (9.12,21.76).
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Association Between Clinic and Mortality

A B
Died 28 38 66
Survived | 469 220 | 689
497 258 | 755

~

1 = 0.35, and a 95 % confidence interval for ¢ is (0.21,0.58).

* The initial strong association between Level of Care and Fetal Mortality (¢ = 0.51) disappeared when we
stratified by clinic (¢4 = 0.80 and 5 = 1.01).

* Instead of having to examine multiple 2 x 2 tables we’d like to estimate the OR and compute associations
using a regression model.

* Le., OR for the association between Level of Care and Mortality adjusted for Clinic.

* One way to do this by fitting a Binomial GLM to the data.

2.3 Multiple Regression (GLM) for Binary Responses
* Our previous derivations held for a binary response with a single binary explanatory variable.
* More often we need multiple regression methodology since we may:

a. Want to be able to control for confounding variables and hence want to examine the effect of several
(possibly related collinear) variables simultaneously.

b. Want to examine the effect of categorical covariates (> 2 levels) or continuous covariates.

c. Want to develop sophisticated models that describe complex relationships.

WEEK 4
0927 to 1st October

Topic 2b: Binomial (Logistic) Regression Models

2.4 Setting Up a Binomial Regression Model
1. Introduction and Notation.
2. Interpretation of 3 from logistic regression models as log odds ratios.
3. Logistic regression analysis of to the Prenatal Care example.

* R Data and Code for fitting GLMs.
* Hypothesis tests for S.
* Confidence Intervals for the OR exp{S}.

Introduction and Notation

* QOutcome/Response variable: Y; ~ BIN(m;, ;), i = 1,2,...,n independently.
* Explanatory variables: x; = (2,0, 21, - . - ,zi(p_l))T with z;0 = 1.
* Regression parameters: 8 = (8o, B1,---,Bp-1) -

* Linear predictor: n; = @} 8 = By + Bixi + -+ + Bpi(p—1)-



CONTENTS
* Recall multiple linear regression (Y; ~ N (u;, 02)):
ElY,] = pi =n; = a{ B

* Now with the Binomial data this would suggest we use:

]E{Yz} =m=pu =z B

m;

¢ But this is a bad idea because 0 < 7; < 1 and we’d have to do constrained maximization to find 7;.

* We want a link function: g(m;) = g(i;) = =; B that maps:

g: (Oa 1) - (7003 OO)

* Here are some link functions we might consider:

Identity g(m) =m;

log-log g(m;) = log(— log(;))
complementary log-log  g(m;) = log(— log(1 — ;))

Probit’ g(m) = &~ H(m;)

Logit* g(m;) = log(mi/(1 — ;)

: ® is the cdf for a standard normal random variable.
*: the canonical link for the Binomial (see Chapter 1).

Link Functions for the Binomial Distribution

©  — = identity

loglog

cloglog

<t —{ = probit

e |0git

(qV)
X o
(q\
|
<t
|
i
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The Logit Link and Odds Ratios

The Logit link is the canonical link for the Binomial (see Chapter 1).

This leads us to a Logistic Regression Model:

log( il >=w?ﬁ
lfﬂ'i

* Aside: The inverse of the logit function is called the expit function:

logit(a) = Iog(lia> =b < a= % = expit(b)

* Next: What is the interpretation of the 8 parameters in this model?

Simple Logistic Regression
* Consider a simple case of a binomial outcome Y; ~ BIN(m;, ;) for i = 0,1 and a single binary explanatory

variable:
0 groupO
Ti1 =
1 groupl

The simple logistic regression model equation is:

i
|0g(1 ) = Bo + bizin
=

e When z;; = 0 for ¢ = 0, the model becomes:

I
og(1

* (o = log odds of response for subjects with z;; = 0.

o ) = fo + B1(0) = o
~ o

* Now let’s compare the model with z;; = 1 versus z;; = 0.

Group (1,z;;)" n = Iog(m/ (1-m))

1 (LD Bo+ B og(m1/(1—m))

0 (1,0)T /80 lo (7‘(0/ 1 — To )
Bo= 'og(:;%i &)

* We subtract line 2 from line 1 to isolate 5; and find its interpretation.

* (3, = log odds ratio of response for subjects with x;; = 1 vs x;; = 0.

Logistic Regression Models for Prenatal Care Example

* Response = Fetal mortality

Y; ~ BIN(m;, m;) i =1,2,...,n independently
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* Explanatory Variables:

1 Clinic A
Ti1 = ..
0 Clinic B

1 Intensive level of care
Z;
2 0 Regular level of care

1 Intensive level of care and Clinic A

i3 = itz = {0 Otherwise

* We will use the context of this example to interpret regression parameters from multiple logistic regression
models.

* See Section 2.4.2 for general interpretations.

Model 1: Clinic only model

|Og( o ) = fo + P11
1— Uy
Clinic Level of Care (1,z;1)" log(mi/(1 — 7))

A — (1L,D)" Bo+ b
B — (1,0)"  Bo

Table 3: Clinic only model

* [o is the log odds of infant mortality for babies born to mothers treated at Clinic B.

* (3 is the log odds ratio of mortality for babies born to mothers treated at Clinic A versus Clinic B.

Model 2: Main effects model

T .
|Og( > = ‘80 + /”317’,1 + 62.7?,‘,2

1—7&'1'

Clinic Level of Care (1,1, 2i2)"  log(mi/(1 —m;))

A Intensive (1,1,1)7 Bo + P11+ B2
A Regular (1,1,0)7 Bo + B

B Intensive (1,0,1)7 Bo + B2

B Regular (1,0,0)7 Bo

Table 4: Main effects model

* [y is the log odds of infant mortality for babies born to mothers treated at Clinic B with Regular care.

* (3 is the log odds ratio of mortality for babies born to mothers treated at Clinic A versus Clinic B at the
same level of care.

* [, is the log odds ratio of mortality for babies born to mothers treated with Intensive versus Regular care
at the same clinic (*OR of interest™).
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Model 3: Interaction model

i .
Iog<1 K ) = fo + frza + Pawiz + Patiz

T

Clinic Level of Care (1,21, @i2, i3) | log(mi/(1— 7))

A Intensive (1,1,1,1)T Bo + Bi + P2+ B3
A Regular (1,1,0,0)" Bo + B

B Intensive (1,0,1,0) " Bo + B2

B Regular (1,0,0,0)T Bo

Table 5: Interaction model

* (3 is the log odds ratio of mortality for babies born to mothers treated at Clinic A versus Clinic B at Regular
care.

* (1 + B3 is the log odds ratio of mortality for babies born to mothers treated at Clinic A versus Clinic B at
Intensive care.

* [, is the log odds ratio of mortality for babies born to mothers treated with Intensive versus Regular care
at Clinic B.

* (5 + (3 is the log odds ratio of mortality for babies born to mothers treated with Intensive versus Regular
care at Clinic A.

* (3 is a difference is log ratio odds.
* If B3 = 0, then the association between mortality and level of care does not depend on Clinic.

* Equivalently, if 83 = 0, then the association between mortality and Clinic does not depend on level of care.

Prediction from Logistic Regression

. Lo exp{n; } :
logit(;) = | =N = W=~ — expit(n;
ogit(:) °g(1_m> mo m= e — egit(n)

* Assume we have found ,3 using Fisher scoring (R glm() function).

* The fitted value for the probability of response m; = E[Y;/m;] for explanatory variable(s) «; is:

exp{w;rﬂA} N

14 exp{a:?ﬁ?

N

* The predicted number of responses is: Y = m;#;.

Logistic Regression Analysis of Prenatal Care Data

* Previously: Analysis using likelihood for 2 x 2 tables:

Odds Ratio (outcome = mortality) Estimate and 95 % CI

Intensive vs Regular 0.51 (0.30,0.89)
Intensive vs Regular at Clinic A 0.80 (0.37,1.73)
Intensive vs Regular at Clinic B 1.01 (0.33,3.10)
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* Now:

Use glm() function in R to fit logistic regression models and estimate B
Extract estimates /35, with log(OR) interpretations.

. Conduct hypothesis tests for Hy: 5 = Bko-

. Calculate 95 % confidence intervals for 35 and i) = exp{fx}-

. Try to find best fitting model with fewest parameters.

LB NI S R R

R Data and Code
Data file prenatal.dat

clinic loc 'y m

1 0 0 34 231
2 o 1 4 27
3 1 0 12 188
4 1 1 16 309

* The first line contains the variable names/labels.

* We are using indicator variables for the explanatory variables.
- x;1 = clinic = I{Clinic A}.
- z;2 = loc = [{Intensive care}.

* The response variable y is the number of events (deaths).

¢ mis the number of binomial trials (number of mothers).

prenatal.dat <- read.table("prenatal.dat", header = T)

prenatal.dat$resp <- cbind(prenatal.dat$y, prenatal.dat$m - prenatal.dat$y)
prenatal.dat

modell <- glm(resp ~ loc, family = binomial(link = logit), data = prenatal.dat)
summary (model1l)

names (model1)
model1$family
model1$formula
modell$coefficients
model1$deviance
model1$fitted.values
model1$residuals

41
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# level of care and mortality adjusting for clinic

model2 <- glm(resp ~ clinic + loc, family = binomial(link = logit),
data = prenatal.dat)

summary (model2)

# here we examine whether the association between loc and

# mortality depends on the clinic

model3 <- glm(resp ~ loc + clinic + loc * clinic, family = binomial(link = logit),
data = prenatal.dat)

summary (model3)

# now we examine the marginal relationship between

7# mortality and clinic

model4 <- glm(resp ~ clinic, family = binomial(link = logit),
data = prenatal.dat)

summary (model4)

Selected R Output

Print the augmented dataframe to see what the resp variable (Y;, m; — Y;) looks like:

# here we construct the response variable for the logistic

# regression analysis

prenatal.dat$resp <- cbind(prenatal.dat$y, prenatal.dat$m - prenatal.dat$y)
prenatal.dat

clinic loc 'y m resp.1 resp.2

1 0 0 34 231 34 197
2 o 1 4 27 4 23
3 1 0 12 188 12 176
4 1 1 16 309 16 293

The logistic regression models are fit using the glm commands like:

# now we fit the model using the glm function and store the

# result in "model 1' we indicate 'resp' contains a

# binomial response and that we are using the logistic link

# function

modell <- glm(resp ~ loc, family = binomial(link = logit), data = prenatal.dat)
summary (model1)

Fit of Model 1: Level of Care Model
Iog< o ) = Bo + Pozio

1—7Ti

modell <- glm(resp ~ loc, family = binomial(link = logit), data = prenatal.dat)
summary (modell1)$coefficients

Estimate Std. Error z value Pr(>|z])
(Intercept) -2.0929370 ©@.1562692 -13.393150 6.630754e-41
loc -0.6670729 0.2785400 -2.394891 1.662530e-02
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Components of the summary() output for glm objects
* Estimate: the maximum likelihood estimates of the regression coefficients fy.

e Std Error: estimated standard errors based on the inverse of the information.

se(B) = \/(I1(B)) . = VIH(8)

* z value: Wald-based test statistics for the hypothesis test:

Hy: Bx = 0vs Hy: B # 0.
* Pr(>|z]|): p-value for the above test.
For this model:
* [, is the log odds ratio of mortality for babies born to mothers treated with Intensive versus Regular care.

¥ = exp{f2} = exp{—0.6670729} = 0.51

Hypothesis test for

* We may wish to test:

Hy: 81, = Bro versus Hu: 1, # Bro

* The general Wald Result for scalar gy, is:

(Br — 5k0)2(1kk(3))71 ~Xi

A

equivalently ﬁk(_;ko ~ N(0,1) where se(Bk) = \/Ikk(ﬁ).
se( Ok

* And we can find the p-value of this test using

p_2IP’<Z>M> where Z ~ N(0,1)

se(Ok)
* The summary () output gives the test statistics and p-values for testing
Hp: B, =0vs Hy: B #£0

Hypothesis test for 3, from Model 1: Level of Care Model

summary (model1)$coefficients

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -2.0929370 ©@.1562692 -13.393150 6.630754e-41
loc -0.6670729 ©.2785400 -2.394891 1.662530e-02

¢ We wish to test:

Hy: BQZOVSHAI 52750
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The Wald-based test statistic is:

*_32_0
2* =

06671

se(fa)

And we can find the p-value of this test using:

09735 —2.3949

p=2P(Z > |-2.3949|) = 0.0166 < 0.05

Therefore, we reject the null hypothesis that 35 = 0.

¢ Equivalently, we reject the null hypothesis that OR = 1.

Confidence Interval for the OR

* Calculate CI for 8; = log(+)) and then exponentiate.

¢ Recall the Wald-based confidence interval:

B £ 1.96 se(S)

44

e The Std Error from the summary() output is the square root of the diagonal of the inverse of the

Information matrix.

summary (model1)$coefficients

Estimate Std. Error z

value Pr(>|zl|)

(Intercept) -2.0929370 ©@.1562692 -13.393150 6.630754e-41
loc -0.6670729 0.2785400 -2.394891 1.662530e-02

summary (model1)$cov.unscaled

(Intercept) loc
(Intercept) ©.02442007 -0.02442007
loc -0.02442007 ©.07758452

sqrt(diag(summary(model1)$cov.unscaled))

(Intercept) loc
0.1562692 0.2785400

Confidence Interval for exp{j,} from Model 1: Level of Care Model

summary (model1)$coefficients

loc

Estimate Std. Error z value Pr(>|zl)
(Intercept) -2.0929370 ©.1562692 -13.393150 6.630754e-41
-0.6670729 0.2785400 -2.394891 1.662530e-02

e The 95 % confidence interval for the OR is:

exp{ A1, £ 1.96se(f) }

= exp{—0.6671 = 1.96(0.2785)}
(exp{—1.2130}, exp{—0.1211})
= (0.30,0.89)
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* Note: The estimate and 95 % confidence interval here match those found previously from the 2 x 2 table

analysis.

Fit of Model 2: Main Effects Model

Uy
|og(1 ) = Bo + Biwi1 + Powio
—

model2 <- glm(resp ~ clinic + loc, family = binomial(link = logit),
data = prenatal.dat)
summary (model2)$coefficients

Estimate Std. Error z value Pr(>|z])
(Intercept) -1.7410476 ©.1784691 -9.7554560 1.748132e-22
clinic -0.9862793 0.3089322 -3.1925427 1.410267e-03
loc -0.1503053 0.3301670 -0.4552402 6.489365e-01

* (dds Ratio for mortality for Intensive versus Regular care, controlling for clinic:

exp{f2} = exp{—0.1503} = 0.860

Fit of Model 3: Interaction Model

-
|0g< 1 Zﬂ_}) = Bo + frxi1 + Baxiz + B33
3

model3 <- glm(resp ~ loc + clinic + loc * clinic, family = binomial(link = logit),
data = prenatal.dat)
summary (model3)$coefficients

Estimate Std. Error z value Pr(>lzl|)
(Intercept) -1.756843204 ©.1857092 -9.46018403 3.074017e-21
loc 0.007643349 0.5726827 ©0.01334657 9.893513e-01
clinic -0.928734141 0.3514300 -2.64272868 8.224091e-03

loc:clinic -0.229649891 ©.6949054 -0.33047646 7.410400e-01

Interpretation of Model 3: Interaction Model

Clinic Level of Care (1,1‘1'1,331‘2,1‘1'3)1— |og(7ri/(1 — 7Tl))

A Intensive (1,1,1,1)T Bo + P1+ B2+ B3
A Regular (1,1,0,0) T Bo + b1

B Intensive (1,0,1,0) T Bo + B2

B Regular (1,0,0,0)T Bo

* (Odds Ratio for mortality for Intensive vs Regular care, Clinic A:

exp{ B2 + B3} = exp{0.007643 — 0.229650} = 0.80 = 15

* (dds Ratio for mortality for Intensive vs Regular care, Clinic B:

exp{fa} = exp{0.007643} = 1.01 = 1)
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Fit of Model 4: Clinic Only Model

|Og< T ) = “80 + ‘81.’17,,;1
1-— U

model4 <- glm(resp ~ clinic, family = binomial(link = logit),
data = prenatal.dat)
summary (model4)$coefficients

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -1.756041 ©.1756737 -9.996041 1.586117e-23
clinic -1.062357 ©.2621216 -4.052916 5.058308e-05

* (dds Ratio for mortality in Clinic A versus Clinic B:

exp{f1} = exp{—1.0624} = 0.35

Prenatal Care Wrap-up

* Model 4 provides the best fit to the data with the fewest parameters.

46

* However, the original research question was about the level of care therefore we select Model 2 as our final

model.

* Odds Ratio for mortality for Intensive versus Regular care, controlling for clinic:

exp{ B2} = exp{—0.1503} = 0.860

¢ Exercises:

1. Conduct a formal hypothesis test of Hp: 52 = 0 and confirm p-value in the R output.
2. Show that the 95 % confidence interval for the OR is (0.450, 1.643).

3. Show that the Odds Ratio for mortality for Clinic B versus Clinic A, controlling for level of care is:

exp{—p1} = exp{0.9863} = 2.68

Topic 2c: Likelihood Ratio (Deviance) Tests

Major Developments From Last Topic: Logistic Regression Models
Binomial GLM / Logistic Regression Model

Y; ~ BIN(m;,m;), % = 1,...,n independently with explanatory variables ;:

Iog( L )zx?ﬂ
1—7Ti

e Estimation: B come from Fisher Scoring using R function glm().

* Interpretation: (3; have log OR interpretations (k > 0).

* Hypothesis Tests of Hy: 8 = Bro versus Ha: B # Bro-

* Confidence Intervals: (3 + Z1—a/2 se(Bx) where se(3;,) = \/I¥%(B).
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Topic 2¢: Logistic Regression: Likelihood Ratio (Deviance) Tests

1. Likelihood for Binary (Logistic) Regression:

1B 1) =Y (wlal ) - milogl1 + expla] 81))
=1
2. Likelihood Ratio Tests:
—2log(R(0)) = —2r(0) ~ X} Scalar
—2log(R(0)) = —2r(0) ~ x5, p-dim Vector 0

3. Testing Nested Non-saturated Models:

Hop: Bp == f4—1 =0vVs Hu: atleastone of 3,,...,8,—1 # 0

2.5 Likelihood for Binary (Logistic) Regression
* Outcome/Response variable: Y; ~ BIN(m;, m;), i =1,...,n

£ |y) = [[mt (1= m)es

i=1

Um|y) = Z(yz log(m;) + (mi — y;) log(1 — 71'1’))

1

.
Il

* Explanatory variables: @; = (zi0, i1, ..., Ti(p—1)) -

* Regression parameters: 8 = (S, 81, - - - ,Bp,l)—r.

* Link function: logistic link

Likelihood for Logistic Regression

* Log likelihood for Binomial distribution:

1= 3 (w12 i)

i=1

* Using logit link we can reparameterize the log-likelihood in terms of 3:

i exp{z; B}
lo =z, P i S M S
g(l—m) z; B T 1+ exp{z B}

log(1 — m;) = |og(eXp{“’iTB}) = Iog(l) = —log(1 + exp{z; 8})

1 +exp{z/ B} 1+ exp{z; B}

* Log likelihood for logistic regression:

n

1B1y) = (vl B) — milog(1 + expla/ BY))

i=1

47
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* If dim(B) = p < n, the model is said to be unsaturated.
e If p = n, we have a saturated model.
» Maximize ¢(3 | y) to obtain the MLE’s B (i.e., using Fisher Scoring in R glm()).
* Transform to get estimates #; = expit(z; 3).
¢ For a saturated model, e><pit(:c,iT B) will equal the Binomial MLE y; /m;, and we will have m;#; = y; (i.e., a
perfect fit).
Hypothesis Tests for Logistic Regression
* We want to ask: how good is the model?
* How well do the m;#; approximate the data y;?
* How much worse is the fit of a particular unsaturated model versus the saturated model?

* Previously: Wald-based tests of:

Hy: By = Bro versus Hu: By # Bro-

* Today: Likelihood Ratio based tests for:

Ho: B, = Br41 = 0 versus Hu: By # 0 or B4 # 0.

This will allow us to test the overall fit of nested models.

Likelihood Ratio Tests — General Setting
* Suppose £(8) is the likelihood of a ¢-dim parameter vector 6.

- Let 0 be the g-dim MLE (unconstrained/saturated, ¢ = n).
— Let 6 be the p-dim MLE (constrained/unsaturated, p < q).

* Hy: the unsaturated p-dim model is adequate.
* Hy: the p-dim model is not adequate.

* Recall the Likelihood Ratio result. Under Hy,

—2log(R(0)) = —2|og<ﬁgg;> = —2(6(9) - 6(9)) ~ Xg—p

* This is often referred to as the Deviance: D = —2log(R(6)).

* Reject Hy at significance level 6 if:

]P’(Xg_p > —2|og(R(0))) <a
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Likelihood Ratio Tests — Logistic Regression

* Saturated model MLEs: 7; = y;/m;, i =1,...,n.

* Unsaturated model MLEs: # = expit(x; 3).

— Regression models are a way of imposing constraints on the estimation of 7 (through p-dim 3).

* Hp: The p-dim model logit(r;) = =, B is adequate.

* Hy: The p-dim model is not adequate compared to the n-dim saturated model.

* For the binomial with logit link the LR/Deviance test statistic is:

D = ~2(¢(#) - (7))
= 2({(7) — (7))

=2 _Z(yi |0g(7~1'i) + (ml — yi) |Og(1 — 7~TZ)) — (yi |Og(ﬁ'z) + (ml — yi) |Og(1 — ﬁ'l)):|

—i=1 i=1

—9 En: (yz |og<$> + (m; —y;) Iog(W)) - 2":(% log(:) + (mi — yi) log(1 — ﬁz))]

)

_ - ' Yi 4 4 mi; —Yi
=2 Z (y, Iog<miﬁi) + (m; — ;) Iog(mi(1 — ﬁz)>

* Aside: Note that D has the general form: D =23 O;; Iog(%j )

Likelihood Ratio Tests — Logistic Regression
* We expect D ~ x2_, under Hy.

- Unfortunately, this is not a good approximation.

— Approximation is much better for tested nested unsaturated models though.

* In R, the D is reported as the Residual Deviance.

model3$deviance
[1] -4.352074e-14
model4$deviance

[1] 0.3148411

* Hjy: Model 4 is adequate, Hs: Model 4 is not adequate compared to Model 3.

p=P(x3 > 0.3148) = 0.85

* Therefore do not reject the null hypothesis that Model 4 (Clinic only) is adequate.
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Pearson Statistic — Logistic Regression

* The Pearson statistic is another statistic one can use for assessing “overall” fit of a model.

n
P =
1=1

(yi — maif;)?
miﬁi(l — ﬁ'l)
e Aswith D, P ~ X%—p under Hy: the model provides a reasonable fit to the data.
o . _ (0i—Ei)?
Note: P has the general form P = ) “=~".

* The x? approximation is a bit better than for deviance statistics.

* Both are poor if sample size (m;) are small though.

2.6 Testing Nested Non-saturated Models
* The previous LR/Deviance test was for an unsaturated model vs a saturated model.

* Now consider two unsaturated models and one saturated model (p < ¢ < n).

logit(m;) = Bo + Brzi1 + -+ + Bp-1Tip-1) -
logit(m;) = Bo + Brzir + -+ + Bp—1Ti(p—1) + - + Bg—1Ti(g—1) 2)
logit(m;) = Bo + B + -+ + Bp1Tip—1) + -+ + Bg1Tig-1) + - + Bu1Tign-1) ®

Model (1) is nested within Model (2).
* Hj: The p-dim Model (1) fits the data as well as Model (2).
- HoZ ﬁp:"'zﬁq—l ZO

Hy: Model (1) is inadequate compared to Model (2).

— Hjy: atleast one of §p, ..., B84—1 # 0.

Testing Nested Non-saturated Models

Model Dimension MLEs
(1) Reduced model P T
(2) Full model q T
(3) Saturated model n £

* Previously, found the LR/Deviance test vs saturated models.

e LR/Deviance test of (1) vs (3): )
Dy = =2(€(&) — (7)) ~ X3,

¢ LR/Deviance test of (2) vs (3): -
DA = _2(5(7}) - g(ﬁ)) ~ X?L—q
¢ Now we wish to conduct an LR/Deviance test of (1) vs (2):
AD = 72(6(7%) - E(fr))
= —2(t(%) ~ () +2(¢(7) ~ (7))
= Dy — D
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* Fact: If X; ~ x2 , then X7 + Xo ~ x2 ..
* Therefore, under Hp: AD ~ x_.

— This approximation is much better than when testing an unsaturated model versus the saturated
model.

* If p="P(x2_, > AD) < « then reject Hp: This implies:

— Reduced model does not fit the data as well as Full model.

— One or more of ;p, ..., ;1) is important (i.e., associated with the outcome).

Testing Non-Saturated Models in Prenatal Care Example

e Summary of Deviance (“Residual deviance”) from R output:

Model Variables Deviance  Parameters
1 loc 10.81438 2
2 clinic + loc 0.1069281 3
3 clinic + loc + loc*clinic =0 4
4 clinic 0.3148411 2

* Is level of care associated with fetal mortality?

Hyp: By = 0 versus Hy: B2 # 0

model4$deviance - model2$deviance
[1] 0.207913

1 - pchisq(model4$deviance - model2$deviance, model4$df.residual -
model2$df.residual)

[1] 0.6484081
model2 <- glm(resp ~ clinic + loc, family = binomial(link = logit),

data = prenatal.dat)
summary (model2)

Call:
glm(formula = resp ~ clinic + loc, family
data = prenatal.dat)

binomial(link = logit),

Deviance Residuals:
1 2 3 4
-0.08521 0.25805 ©.13909 -0.11719

Coefficients:
Estimate Std. Error z value Pr(>|z]|)
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(Intercept) -1.7410 0.1785 -9.755 < 2e-16 **xx%

clinic -0.9863 0.3089 -3.193 0.00141 *x%

loc -0.1503 0.3302 -0.455 0.64894

Signif. codes: @ 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' @.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 16.91763 on 3 degrees of freedom
Residual deviance: 0.10693 on 1 degrees of freedom
AIC: 23.262

Number of Fisher Scoring iterations: 3

Summary: Likelihood Ratio (Deviance) Tests for Logistic Regression
* (log) Relative Likelihood Result: D = —2log(R(6)) = —2r(8) ~ x2_,,.

* For the binomial with logit link the LR/Deviance test statistic is:

v E (y o5 ) + (=)o <M>>]

* This is reported as the “Residual Deviance” in R glm summary output.

Used to test the fit of nested non-saturated models (¢ > p):
logit(m;) = Bo + Brir + -+ Bp—1Ti(p—1) + - + Bg—1Ti(g—1)

—_— HO: Bp:...:ﬁq71 :0_
— Hy: atleast one of §p, ..., B84—1 # 0.

* Test statistic: AD ~ x2_, and p-value = P(x2_, > AD).

q
WEEK 5
4th to 8th October

Topic 2d: Logistic Regression: Residuals & CIs

Binomial GLM / Logistic Regression Model

Y; ~ BIN(m;,m;), i = 1,...,n independently with explanatory variables x;:

[ = a3
og<1_m> z; B

e Estimation: B come from Fisher scoring using R function glm().

* Interpretation: /3, have log OR interpretations (k > 0).
* Wald based Hypothesis Tests of Hy: 8 = Bro versus Ha: S # Bro-
* Confidence Intervals: (), + Z1—a/2 se(fr) where se(3;,) = \/I**(B).
* Deviance/LR based Hypothesis Tests for nested models:
Hyp: Bp == P41 =0vVs Hu: atleastone of 3,,...,8,—1 # 0
using AD = Dy — Dp ~ x2_, under Hy.

52
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Topic 2d: Logistic Regression: Residuals & Confidence Intervals
1. Residuals for Binomial Data — Deviance Residuals:

rP = sign(y; — mi#i)\/|di

2. Neuroblastoma Example:

* Categorical explanatory variables: use of dummy variables.
* Residual plots using Deviance Residuals.

* Finding requested Odds Ratios.
3. Confidence Intervals for non-linear functions of 7;:

* How to get a CI for exp{3y — 31} or m; = expit(z,; B).

Residuals for Normal Linear Regression Models

¢ The raw residuals were:

Ti =Yi — Mg

¢ The standardized residuals were:

A~

dizwwtn—p—)/\/(oal)
g l_hii

* The overall fit of the model and appropriateness of its underlying assumptions can be assessed using various

types of Residual Plots. For example:

- Residuals versus covariate x; (checks linearity assumption).
— Residuals versus fitted values fi; (check normality and constant variance).

- Normal QQ (quantile-quantile) plots of residuals (checks normality).

2.7 Residuals for Binomial Data — Deviance Residuals

¢ Recall the LR/Deviance test statistic:

v E (y log(mi;) + i log <M>)]

¥
i=1

¢ Define the Deviance Residuals to be:
ri = sign(y; — mift;)/|dil

* Under Hy: the model is adequate,

Zdiwxi_p = r’ ~N(0,1)

=1

* Use the plots of the deviance residuals to assess whether the r? looks like independent NV (0, 1) observations.
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Residuals for Binomial Data — Pearson Residuals

¢ Define the Pearson Residuals to be:

* Under Hy: the model is adequate, 7 ~ N(0, 1).

* Note: if m;#; < 5 for one or more 7, we should be concerned about the validity of the approximation (x?
or M (0,1)) and hence your conclusions (the same holds for m;(1 — #;)).

2.8 Estimation of Prognosis for Children with Neuroblastoma

Purpose of Study: To investigate the relationship between the probability of surviving 2 years free of
disease following diagnosis and treatment for neuroblastoma, and age at diagnosis and stage of disease at

diagnosis.
Stage
Age (months) I II 111 v \Y
0-11 11/12 15/16 2/4 5/18 18/19
12-23 3/4 3/T 5/8 0/25 1/3
24+ 4/5  4/12  3/15 3/93 2/5

Cell entries are of the form y/m with y representing the number of patients surviving 2 years, and m
representing the number of patients in that age-stage combination at the start of the study.

As an initial look at the data, consider the marginal distributions.

Stage
Age (months) I 11 111 v A% Total
0-11 11/12 15/16  2/4  5/18 18/19 | 51/69
12-23 3/4  3/7 5/8 0/25 1/3 | 12/47
24+ 4/5 4/12  3/15  3/93 2/5 16/130
Total 18/21 22/35 10/27 8/136 21/27 | 79/246

Setting up the Regression Models

* Outcome: Let Y; be the number of children in group i who survived 2 years out of m; total children in
group i. Assume Y; ~ BIN(m;, 7;) independently i =1, ..., 15.

* Explanatory variables: Use dummy variables to represent Age and Stage levels:

1 if age 12-23 months 1 if age 24+ months 1 stage Il
Til = Ti2 = Ti3 =

0 ow. 0 ow. 0 ow.

1 if stage III 1 if stage IV 1 ifstageV
Tiqg = Ti5 = Tie =

0 o.w. 0 ow 0 ow

¢ Now consider the models:

1. Age & Stage:
logit(m;) = Bo + Brxir + Boxio + Baxiz + Paxia + Bsxis + Petis
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2. Age only:
logit(m;) = Bo + Biwi1 + Bawio

3. Stage only:
logit(m;) = Bo + Baxis + Baxia + Bsxis + Pexis

R Data and Code

Data file neuro.dat

age stage y m
1 111 12
15 16
2 4
18
19
4
7
8
25
3
5
12
15
93
5

o No oA~ wN =
(651

Y N | QA
w N =

=
IS
O~ WN =00 wdN =0 S wN

(o)
W wwwwNhDNDNDDNDNN =2
N Wwh D200 0 WWOo

—_
(6]

¢ First line contains the variable labels.
¢ 15 observations.

* Recall age and stage are categorical (ordinal) variables, so we will have to compute the indicator variables
in the R program.

# Read in the Neuroblastoma dataset

neuro.dat <- read.table("neuro.dat", header = T)

# here we create indicator variables for age and stage

neuro.dat$agef <- factor(neuro.dat$age)

neuro.dat$stagef <- factor(neuro.dat$stage)

# here we construct the response variable for logistic

# regression: (y, m-y)

neuro.dat$resp <- cbind(neuro.dat$y, neuro.dat$m - neuro.dat$y)

neuro.dat

# here we fit the model with age and stage and print out

# summary statistics

modell <- glm(resp ~ agef + stagef, family = binomial(link = logit),
data = neuro.dat)

summary (model1)

summary (modell, corr = T)$correlation

# record deviance residuals (rdl), linear predcitor (Ipl1),

# and fitted values (fvl)

rd1 <- residuals.glm(modell, "deviance")

lp1 <- modell$linear.predictors



CONTENTS 56

fvl <- modeli1$fitted.values

# here we compute the Pearson residual as an exercise

rpl <- (neuro.dat$y - neuro.dat$m * fvi1)/sqrt(neuro.dat$m x fvi =
(1 - fvl))

# here we verify that the fitted values agree with what we

# expect from the linear predictor

fv2 <- exp(lp1)/(1 + exp(lp1))

cbind(rd1, rpil, lp1, fvi, fv2)

# plotting the deviance and Pearson residuals

pdf ("neuro-residual.pdf", height = 6, width = 8)

plot(fvl, rdl, ylim = ¢(-3, 3), xlab = "FITTED VALUES", ylab
pch = 1)

points(fvl, rpl, pch = 2)

abline(h = -2, Tty = 2)

abline(h = 2, lty = 2)

legend(@, 3, c("Deviance Residual", "Pearson Residual"), pch
2), bty = "n")

dev.off

# here we fit two reduced models to enable us to test the

# importance of age and stage

model2 <- glm(resp ~ agef, family = binomial(link = logit), data = neuro.dat)

summary (model2)

model3 <- glm(resp ~ stagef, family = binomial(link = logit),
data = neuro.dat)

summary (model3)

"RESIDUALS",

c(1,

Selected R Output

The final data object neuro.dat is given by:
neuro.dat

age stage y m agef stagef resp.1 resp.2
111 12 1 1 11 1
15 16 15
2 4 2
18
19
4
7
8
25
3
5
12
15
93
5

(6]
(&)}
—_

o Noy o~ wN =

- a a4 o
AW
W wWwwWwwwNNDNNNDND = 2 a2 o
OB WN =0 »hwWN=0 D wN
N W wWwh b =2 00Ul Ww o
W wWwwwwNhNNDNDNDND = 22 o
O W N =0l WD =0 b wiN
N WwhDh_20 01 WW o0
O — N
W O N —="NULWPhH =2 2 wN =

—_
(31

Here is the summary of model 1 including both Age & Stage:

logit(m;) = Bo + fixi1 + Boxio + Bsiz + Bazia + Bsxis + LeTic
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modell <- glm(resp ~ agef + stagef, family
data = neuro.dat)
summary (model1)

binomial(link = logit),

Call:
glm(formula = resp ~ agef + stagef, family = binomial(link = logit),
data = neuro.dat)

Deviance Residuals:
Min 1Q Median 30 Max
-1.47408 -0.61913 -0.09643 0.53163 1.52114

Coefficients:
Estimate Std. Error z value Pr(>|z])

(Intercept) 3.3175 0.7721 4.297 1.73e-05 **xx*

agef?2 -2.1181 0.5736 -3.693 0.000222 **x

agef3 -2.6130 0.5017 -5.208 1.91e-07 **x%

stagef2 -1.2529 0.7837 -1.599 0.109860

stagef3 -1.7759 0.8003 -2.219 0.026478 *

stagef4 -4.3678 0.7902 -5.528 3.25e-08 **x

stagefb -1.0222 0.8644 -1.183 0.236980

Signif. codes: @ '**x' 0.001 'xx' 0.01 'x' .05 '.' .1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 162.832 on 14 degrees of freedom
Residual deviance: 9.625 on 8 degrees of freedom
AIC: 55.382

Number of Fisher Scoring iterations: 4
Before interpreting these results too much, we should look to see how good the fit is to the data.

rdl <- residuals.glm(modell, "deviance")

rpl <- (neuro.dat$y - neuro.dat$m * fvi1)/sqrt(neuro.dat$m * fvi *
1 - fvl))

lp1 <- modelli$linear.predictors

fvl <- modell$fitted.values

fv2 <- exp(lp1)/(1 + exp(lp1))

cbind(rdl, rpl, 1lpl1, fvil, fv2)

rdi rpl p1 fvi fv2
1 -0.77808711 -0.91184050 3.31753053 0.96502534 0.96502534
2 0.68559153 0.63381666 2.06460478 0.88741505 0.88741505
3 -1.47407847 -1.69888561 1.54162565 0.82370092 0.82370092
4 0.17884403 ©.18019371 -1.05030016 0.25916747 0.25916747
5 0.63431439 0.58779486 2.29528941 0.90848616 0.90848616
6 -0.08658336 -0.08736144 1.19944586 0.76842619 0.76842619
7 -0.30801258 -0.30734393 -0.05347989 0.48663321 0.48663321
8 1.52114028 1.56325351 -0.57645902 0.35974778 ©.35974778
9 -1.43545385 -1.02556686 -3.16838483 0.04037295 0.04037295
10 -0.73520283 -0.73328264 ©.17720474 ©.54418562 @.54418562
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o —+-A PRearsonResidual- - - - - oo oo .
I
n
;5' a . o Falo)
&) o — o Jal
n A o o
gé T4 A o K]
o)
o R
™
| | | | |
0.0 0.2 0.4 0.6 0.8 1.0
FITTED VALUES

Figure 1: Plot of Residuals by Fitted Values for Neuroblastoma Model with Age and Stage

11 0.64949774 0.62163765 0.70456102 0.66919823 0.66919823
12 -0.23825133 -0.23663531 -0.54836473 0.36624389 0.36624389
13 -0.50305728 -0.48993834 -1.07134385 0.25514760 ©.25514760
14 0.42894854 0.44782015 -3.66326967 0.02500712 0.02500712
15 -0.09643089 -0.09619454 -0.31768010 0.42124123 0.42124123

Now we consider simplifying the model further by examining the decrease in the quality of the fit that results
from dropping the stage variable(s).

logit(7;) = fo + Bixi1 + Paio

model2 <- glm(resp ~ agef, family = binomial(link
summary (model2)

logit), data = neuro.dat)

Call:
glm(formula = resp ~ agef, family = binomial(link = logit), data = neuro.dat)

Deviance Residuals:
Min 1Q Median 3Q Max
-4.0853 -0.3591 1.5613 2.0684  3.4667
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Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.0415 0.2742  3.799 0.000145 *xx
agef?2 -2.1119 0.4325 -4.883 1.05e-06 *x*
agef3 -3.0051 0.3827 -7.853 4.06e-15 #x*
Signif. codes: @ '**xx' 0.001 'xx' 0.01 'x' .05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 162.832 on 14 degrees of freedom
Residual deviance: 83.583 on 12 degrees of freedom
AIC: 121.34

Number of Fisher Scoring iterations: 5

Now we fit the model excluding the age variable to examine the drop in the quality of fit from model one
(with age and stage).

logit(m;) = Bo + Bawiz + Bawis + Psxis + Petic

model3 <- glm(resp ~ stagef, family = binomial(link = logit),
data = neuro.dat)
summary (model3)
Call:
glm(formula = resp ~ stagef, family = binomial(link = logit),
data = neuro.dat)
Deviance Residuals:
Min 10 Median 30 Max
-2.0699 -1.5375 -0.5639 1.0444 2.9391
Coefficients:
Estimate Std. Error z value Pr(>|z])
(Intercept) 1.7918 0.6236 2.873 0.00406 **
stagef?2 -1.2657 0.7150 -1.770 0.07671
stagef3 -2.3224 0.7401 -3.138 0.00170 **
stagef4 -4.5643 0.7223 -6.319 2.63e-10 **%
stagef5 -0.5390 0.7766 -0.694 0.48768
Signif. codes: @ 'xx*x' 0.001 '*x' 0.01 'x' .05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 162.832 on 14 degrees of freedom
Residual deviance: 42.446 on 10 degrees of freedom
AIC: 84.203

Number of Fisher Scoring iterations: 5
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Testing Nested Models

Now we can consider testing nested models using Deviance/Likelihood Ratio Tests. Recall:

Model Factors In Model Deviance

p n—p
1 Age + Stage 9.625 7 8
2 Age 83.583 3 12
3 Stage 42.446 5 10
4 Intercept only 162.832 1 14

AD = Dy — Dy
= —2(0(%) = £(F)) ~ Xx2_,
where 7 represents the MLEs from the reduced (nested) model and 7 are the MLEs from the full model.

Task #1: Pick the model that best represents the important associations between the outcome and
explanatory variables.

1. Is Stage important?

Hyp: B3=04=P5=06=0 (Model 2 is adequate vs Model 1)
Hp: B3 #0or 5y #0or B5 #0or fg #0 (Model 2 is not adequate)

AD = Dy — Dy = 83.583 — 9.625 = 73.958
p=P(x3_5 > 73.958) < 0.001

1 - pchisq(model2$deviance - modell$deviance, model2$df.residual -
model1$df.residual)

[1] 3.330669e-15

Therefore we reject the null hypothesis that stage is unimportant.

2. Is Age important?

Hy: B1=062=0 (Model 3 is adequate vs Model 1)
Hp: 81 #0o0r By 20 (Model 3 is not adequate)

AD = D3 — Dy = 42.446 — 9.625 = 32.821
p=P(x3_; > 32.821) < 0.001

1 - pchisq(model3$deviance - modeli$deviance, model3$df.residual -
model1$df.residual)

[1] 7.464321e-08

Therefore we reject the null hypothesis that age is unimportant.

3. Do we need an AgexStage interaction?
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1 - pchisq(modell$deviance, modell1$df.residual)
[1] 0.292341

So we select Model 1 for interpretation. Here’s the fitted R summary() again for reference.

logit(m;) = Bo + fizi1 + Boxio + PBsiz + Bazia + Bsxis + PeTic

modell <- glm(resp ~ agef + stagef, family = binomial(link = logit),
data = neuro.dat)
summary (model1)

Call:
glm(formula = resp ~ agef + stagef, family = binomial(link = logit),
data = neuro.dat)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.47408 -0.61913 -0.09643 0.53163 1.52114
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.3175 0.7721 4.297 1.73e-05 ***
agef?2 -2.1181 0.5736 -3.693 0.000222 *x*
agef3 -2.6130 0.5017 -5.208 1.91e-07 **x
stagef?2 -1.2529 0.7837 -1.599 0.109860
stagef3 -1.7759 0.8003 -2.219 0.026478 *
stagef4 -4.3678 0.7902 -5.528 3.25e-08 ***
stagef5 -1.0222 0.8644 -1.183 0.236980
Signif. codes: @ '*xx' 0.001 'xx' 0.01 'x' ©0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 162.832 on 14 degrees of freedom
Residual deviance: 9.625 on 8 degrees of freedom

AIC: 55.382

Number of Fisher Scoring iterations: 4

Model Interpretation

Task #2: Interpret the selected model through estimated ORs.

A. What is the odds ratio of surviving two years for a patient with disease in stage IV versus stage I?
OR = exp{f3s} = exp{—4.368} = 0.013

When controlling for age, the odds of surviving two years among those diagnosed in state IV is 0.013 times
the odds among subjects diagnosed in stage I.
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Age Stage (1,1, iz, i3, Tia, Tis, Ti6) log(; /(1 — ;)
NA v (1,%41,2,0,0,1,0) 7 Bo + Bixi1 + Pazia + Bs
NA I (1,241, %2,0,0,0,0) " Bo + Bizi1 + Bozio
Age Stage (1,5051,Iig,xig,IM,Iw,l‘iﬁ)T |Og(7TL/(1 _7Ti))
24+ NA (1,0,1, 23, Tia, Tiz, Tig) | Bo + B2 + B3xiz + Baxia + BsTis + BeTis

12-23 NA (1,1,0, 23, Tia, Ti5, Tig) Bo + B1 + B3xiz + Baxia + BsTis + BeTis

B. What is the odds ratio of surviving for a patient aged 24+ months versus 12-23 months?
OR = exp{fa — 51} = exp{—2.613 — (~2.118)} = 0.61

When controlling for stage, the odds of surviving two years among those diagnosed at 24+ months of age
is 0.61 times the odds of surviving two years among subjects diagnosed at 12-23 months of age.

Constructing Confidence Intervals

Task #3: Get Confidence Intervals for our estimated ORs.

A. OR = exp{fs}, so we can use a Wald-based CI,

exp{B5 +1.96 se(B5)} = exp{—4.368 £ 1.96(0.7902) } = (0.003,0.060)

B. What about a CI for OR = exp{f32 — 51 }?

¢ In order to calculate a CI we need to obtain se(Bg — 51).

* This is not directly available from R summary ().
Var(aX 4 bY) = a* Var(X) + b* Var(Y) 4 2ab Cov(X,Y)
Var(B> — A1) = Var(f2) + Var(B1) — 2 Cov(f2, 51)

» The covariance matrix (I ') is available from summary(model1)$cov.unscaled.

2.9 Confidence Intervals for non-linear functions of 7;
Recall that since 3 is an MLE, 3 ~ MVN(3, I *1(5)) approximately. This means that:

a] B~ N(x! B.a] I (B)z;)

and R
a:iT,B - :L'Z.T,B

wiTI_l(B)ﬁci

~N(0,1)

1. An approximate 95 % CI for n; = ;] 3 is then given by:

x] B +1.96\/x] I-1(B)x; = (i, Mv)

2. If the OR of interest is expressed as exp{c' 3} where c is a column vector defining the contrast of
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the regression coefficients, then an approximate 95 % CI for this OR is:
exp{cTB +1.964/ cTI_l(,é)c}
3. An approximate 95 % CI for ; = exp{z; B}/(1 + exp{x, B}) = expit(x; B). is:

(expit(ﬁL)7 expit(%)) :

Back to the Neuroblastoma Example
B. Find a confidence interval for OR = exp{f3> — (1 }.

* The vector defining the contrast of interest is ¢ = (0, —1,1,0,0,0,0)":

Bo
TA b1 P
c"B=[0 -1 100 0 0|.|=p5-5
Bs
IOO IOl 102 . IO(;D—l)
I It 7z ... e
CTI—l(B)c: [0 -1 1 0 0 0 O] 121 121 122 12(;071)
[0 [e-DT o2 L -1

— Ill +I22 o 1'12 _ I21
= Var(Bg) + Var(ﬁl) -2 Cov(ﬂ}, Bl)

* The program used to compute the variance is as follows:

tmp <- summary.glm(modell)

names (tmp)
v <- tmp$cov.unscaled
A%

x <- c(0, -1, 1, 0, 0, @, @)
x <- as.matrix(x, 7, 1)
dim(x)

t(x) %*%% v %*% X

* The resulting output is as follows.

o

S o oo

63
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# use the summary.glm function and store the result in the
# tmp object

tmp <- summary.glm(modell)

# examine the contents of the tmp objects and store the

# covariance matriz in v

names (tmp)
[1] "call" "terms" "family" "deviance"
[5] "aic" "contrasts" "df.residual" "null.deviance"
[9] "df.null" "iter" "deviance.resid" "coefficients"
[13] "aliased" "dispersion" "df" "cov.unscaled"

[17] "cov.scaled"

v <- tmp$cov.unscaled

v
(Intercept) agef2 agef3 stagef2 stagef3
(Intercept) 0.5960933 -0.18392302 -0.17583962 -0.46378468 -0.43679598
agef2 -0.1839230 ©.32901185 0.15792411 ©.01837858 -0.01638010
agef3 -0.1758396 ©.15792411 0.25170695 ©.01648743 -0.01538075
stagef2 -0.4637847 ©.01837858 0.01648743 0.61411717 ©.44845241
stagef3 -0.4367960 -0.01638010 -0.01538075 ©0.44845241 ©0.64043301
stagef4 -0.5098913 0.08279176 0.06769368 0.45553801 ©0.44437841
stagef5 -0.4969598 0.06047881 0.05606300 0.45425149 0.44552862
stagef4 stagefb
(Intercept) -0.50989130 -0.49695978
agef?2 0.08279176 0.06047881
agef3 0.06769368 0.05606300
stagef?2 0.45553801 0.45425149
stagef3 0.44437841 0.44552862
stagef4 0.62439906 ©0.46920985
stagefb 0.46920985 ©.74722885

x <- c(o, -1, 1, 0, 0, 0, 0)
x <- as.matrix(x, 7, 1)
dim(x)

(11 71

# compute the variance estimate of difference in estimates
# for age parameters
t(x) %*% v %*% X

[,1]
[1,] 0.2648706

* We previously found that:
OR = exp{fs — 1} = exp{—2.613 — (—2.118)} = 0.61
* From the new R output, we have calculated:
Var(Bs — B1) = 0.2649
* An approximate 95 % CI for 8 — f3; is therefore:

—0.495 £ 1.96v/0.2649 = (—1.504,0.514)
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* The corresponding interval for the odds ratio is:

exp{(—1.504,0.514)} = (0.22,1.67)

Topic 2e: Bioassay and Dose Response Models

* Previously: Logistic regression analysis of Binomial data with binary and categorical explanatory variables.

* Today: Explore different link functions and continuous explanatory variables.

1. Modelling the Dose Response Relationship.

¢ Tolerance distributions and their associated links.

* Finding the median lethal/effective dose.

2. Beetle Mortality Example.

2.10 Bioassay and Dose Response Models

* Bioassay experiment: Expose several groups of subjects to varying levels of a toxin/drug and determine
how many responses within a fixed period of time.

» Stimulus: Each group is subjected to a particular dose of the toxin/drug:

dose = log(concentration)

* Response: As a result of the stimulus, subjects will manifest a binary response (often of the form
died/survived).

* Tolerance: We assume that for each subject there is a certain dose level above which the response will
always occur.

— This level is called the tolerance or threshold.

— The tolerance varies from one individual to another in the population and therefore from subject to
subject in the sample.

— We can therefore ascribe a distribution to it.

The Tolerance Distribution
* 2 = concentration of the stimulus (toxin/drug).
* x = log(z) = dose/intensity of the stimulus.

* f(x) = pdf for the distribution of the tolerance in the population (i.e., the distribution for the stimulus/dose
at which response occurs).

* Suppose a dose of ;o were applied to the population. What proportion would respond?
)
o = / f(s)ds

e If g < x1, then my < 4.
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Modelling the Dose Response Relationship
For each group j =1,...,J let:

* m; = number of subjects in group j.

* z; = dose applied to subjects in group j.

* y,; = the number of subjects with response in group j.

Dose  Responders Total

j Yj mj o yj/m;
1.6907 6 59 0.10
1.7242 13 60  0.22
1.7552 18 62 0.29

Assume
Y; ~ BIN(m;, ;)

where 7; = probability of response in group j (i.e., at dose z;).

j=1,...,J independently

?

* Goal: To model 7; = 7;(z,) as a function of the continuous stimulus/dose covariate x;.
* Since 0 < 7 < 1, the usual setup is to model using:
g(m) = Bo+ Pz =n
where g( - ) is a link function.

¢ Then we have:
m(z) = g~ (Bo + fr)

e What link function should we select?

Typical Dose Response Curve
TODO figure
* This suggests selecting g( - ) such that g=*( - ) is a cdf:

m(x) =g ' (Bo + frx) = F*(Bo + Pr)

The Link Function and the Tolerance Distribution

¢ Now we have an inverse link function that is a cdf:
m(z) =g ' (Bo + Brz) = F*(Bo + Brx)

Recall our original definition of the tolerance distribution:

wto) = [ fe)as

So if we select a tolerance distribution that will determine the link function through:
m(x) = g~ (Bo + brz) = F* (o + i) = / f(s)ds
* f(z) determines how the “probability of a positive response” changes with the value of the dose.

Q%Q:@ww%+m@wn=ﬂw
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Some Choices for the Tolerance Distribution

1. Normal Tolerance Distribution (f(s) is Normal pdf):
x
m(x) = / f(s)ds
— o0
T . 2
:/ ! exp{—1 (S H) }ds
oo V2102 2\ ¢
ey
o

where @ is the M(0,1) cdf. This implies:

g

91W0+ﬁw)=@<x_u)

we) =g~ (0 + pra) = o (2
@71(7('(1')) = ﬂo + 51% = L ; a
We call this the Probit link g(- ) = ®~1(-).

1. How do we interpret 5y and 5;?

* They are no longer log odds ratios (as with logistic link).

* Interpretation is in terms of ; and o the parameters of the tolerance distribution.

m(x) =g~ (Bo + frzx) = <I’<$U'u> = (D(x - /"L)

— 1
Bo="F, Bi=-
o o
Median lethal/effective dose
Let 0 be the median lethal/effective dose.
* The dose ¢ at which 50 % of the population has the response i.e., 7(§) = 0.50.
* Find an expression for ¢ in terms of 3y and (;:
ot (71'(56)) = Bo + iz
®1(0.50) = By + £16

0=00+Bid
_
"=

* Can also find other quantiles of the tolerance distribution i.e., 7(d,) =p, 0 < p < L.

A Dose Response Example
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Tolerance Distribution Link Function
Name T=g"'(n) n=g(m)
m(z) :/ i exp _1(50 + Brs)? ¢ ds
— 0 2T 2 n= (b_l (’]‘(’)
Normal .
= ®(fo + p17) probit
=®(n)
“ Brexp{fBo + Bis}
p— d
0= G resmingr®
Logistic _ ool £ i) = log %)
1+ exp{fo + f1z} logistic
ooy
1 + exp{n}

m(z) = /_ Brexp{Bo + B1s — exp{Bo + B1s}} ds

: n = log(— log(1 — ))
Extreme Value _ / exp{v — exp{v}} dv complementary log-log

=1- exp{fexp{n}}

Beetle Mortality

Consider an experiment by Bliss (Annals of Applied Biology, 1935) in which groups of beetles were exposed
to varying concentrations of carbon disulphide (CS,) gas.

# of insects  # of insects

Dose (LL'Z) killed (LL'Z) m; yj/mi
1.6907 6 59 0.10
1.7242 13 60 0.22
1.7552 18 62 0.29
1.7842 28 56 0.50
1.8113 52 63 0.83
1.8369 53 59 0.89
1.8610 61 62 0.98
1.8839 60 60 1.00

R Data and Code

Data file beetle.dat

dose y m
.6907 6 59
.7242 13 60
.7552 18 62
.7842 28 56
.8113 52 63
.8369 53 59
.8610 61 62
.8839 60 60

O NOOl b wWwN —
S W G
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* Recall we are interested in modelling the dose-response relationship:

m(x) = g~ (Bo + Prz)
where x = dose.
* We will fit several binomial regression models to this data.

e Use various link functions to find the best model.

# R program for analysis of dose-response data
beetle.dat <- read.table("beetle.dat", header = T)
# here we construct the response variable for logistic
# regression
beetle.dat$resp <- cbind(beetle.dat$y, beetle.dat$m - beetle.dat$y)
beetle.dat
# here we fit a logistic model involving dose
modell <- glm(resp ~ dose, family = binomial(link = logit), data = beetle.dat)
summary (model1)
# here we record deviance residuals in rdl
rd1 <- residuals.glm(modell, "deviance")
fvl <- modeli$fitted.values
# plotting the deviance residuals by dose and by fitted
# values
pdf("beetle-residuals.pdf", width = 10, height = 8)
par(mfrow = c(3, 2))
plot(beetle.dat$dose, rdi, ylim = c(-5, 5), xlab = "DOSE", ylab = "DEVIANCE RESIDUALS")
abline(h = -2)
abline(h = 2)
title("Model 1 - logit link")
plot(fvl, rdl, ylim = c¢(-5, 5), xlab = "FITTED VALUE", ylab = "DEVIANCE RESIDUALS")
abline(h = -2)
abline(h = 2)
title("Model 1 - logit link")
# here we fit a probit model involving dose
model2 <- glm(resp ~ dose, family = binomial(link = probit),
data = beetle.dat)
summary (model2)
rd2 <- residuals.glm(model2, "deviance")
fv2 <- model2$fitted.values
# here we fit a complementary log-log model involving dose
model3 <- glm(resp ~ dose, family = binomial(link = cloglog),
data = beetle.dat)
summary (model3)
rd3 <- residuals.glm(model3, "deviance")
fv3 <- model3$fitted.values
plot(beetle.dat$dose, rd2, ylim = c¢(-5, 5), xlab = "DOSE", ylab = "DEVIANCE RESIDUALS")
abline(h = -2)
abline(h = 2)
title("Model 2 - probit link")
plot(fv2, rd2, ylim = ¢(-5, 5), xlab = "FITTED VALUE", ylab = "DEVIANCE RESIDUALS")
abline(h = -2)
abline(h = 2)
title("Model 2 - probit link")
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plot(beetle.dat$dose, rd3, ylim = c(-5, 5), xlab = "DOSE", ylab = "DEVIANCE RESIDUALS")
abline(h = -2)

abline(h = 2)

title("Model 3 - log-log link")

plot(fv3, rd3, ylim = c¢(-5, 5), xlab = "FITTED VALUE", ylab = "DEVIANCE RESIDUALS")
abline(h = -2)

abline(h = 2)

title("Model 3 - log-log link")

Selected R Output

Fit of the logistic link model:

summary (model1)

Call:

glm(formula = resp ~ dose, family = binomial(link = logit), data = beetle.dat)
Deviance Residuals:

Min 10 Median 30 Max
-1.5941 -0.3944 0.8329 1.2592 1.5940

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -60.717 5.181 -11.72 <2e-16 **x
dose 34.270 2.912  11.77 <2e-16 *xx
Signif. codes: @ '**x' 0.001 '**' 0.01 'x' ©.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 284.202 on 7 degrees of freedom
Residual deviance: 11.232 on 6 degrees of freedom
AIC: 41.43
Number of Fisher Scoring iterations: 4
Fit of the probit link model:
summary (model2)
Call:
glm(formula = resp ~ dose, family = binomial(link = probit),
data = beetle.dat)
Deviance Residuals:
Min 10  Median 30 Max
-1.5714 -0.4703 0.7501 1.0632 1.3449

Coefficients:
Estimate Std. Error z value Pr(>|z])
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(Intercept) -34.935 2.648 -13.19 <2e-16 xx*
dose 19.728 1.487 13.27 <2e-16 **xx*
Signif. codes: @ '**x' 0.001 '**' 0.01 'x' ©.05 '.' @.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 284.20 on 7 degrees of freedom

Residual deviance: 10.12 on 6 degrees of freedom

AIC: 40.318

Number of Fisher Scoring iterations: 4

Fit of the complementary log-log link model:

summary (model3)

Call:
glm(formula = resp ~ dose, family = binomial(link = cloglog),
data = beetle.dat)

Deviance Residuals:
Min 1Q Median 30 Max
-0.80329 -0.55135 0.03089 0.38315 1.28883

Coefficients:
Estimate Std. Error z value Pr(>|z])
(Intercept) -39.572 3.240 -12.21 <2e-16 **xx*
dose 22.041 1.799 12.25 <2e-16 ***
Signif. codes: @ '**x' 0.001 'xx' ©.01 'x' .05 '.' .1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 284.2024 on 7 degrees of freedom
Residual deviance: 3.4464 on 6 degrees of freedom
AIC: 33.644

Number of Fisher Scoring iterations: 4

Deviance Residual Plots
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DEVIANCE RESIDUALS DEVIANCE RESIDUALS

DEVIANCE RESIDUALS

-2

-4

-2

-4

-2

-4

Model 1 - logit link

1.70 1.75 1.80 1.85
DOSE
Model 2 - probit link
o ° ° o
o
o o
T T T T
1.70 1.75 1.80 1.85
DOSE
Model 3 - log-log link
o
o o
o o ° °
T T T T
1.70 1.75 1.80 1.85
DOSE

971(30 + Bl) fit the data.

Fitted Dose-Response Curves

plot(beetle.dat$dose, beetle.dat$y/beetle.dat$m, xLlim
1.95), ylim

DEVIANCE RESIDUALS DEVIANCE RESIDUALS

DEVIANCE RESIDUALS

-2

-4

-2

-4

-2

-4

Model 1 - logit link

72

0.2 0.4 0.6 0.8 1.0
FITTED VALUE
Model 2 - probit link
o o 0°
o o
T T T T T
0.2 0.4 0.6 0.8 1.0
FITTED VALUE
Model 3 - log-log link
o
o
c)0
o o
T T T T T
0.2 0.4 0.6 0.8 1.0
FITTED VALUE

c(1.65,

c(@, 1), xlab = "DOSE", ylab = "PROBABILITY OF DEATH")
x <- seq(1.65, 1.95, by = 0.001)

prob <- as.vector(rep(1, length(x)))
beta <- as.vector(modell$coefficients)
for (i in 1:length(x)) {

prob[i] <- exp(betal[1] + betal[2] * x[i]1)/(1 + exp(betal[1] +

We can plot the actual data (as y;/m;) against dose x;, and see how well the dose-response curves #(z) =
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betal2] * x[il))
}
lines(x, prob, lty = 2)
beta <- as.vector(model2$coefficients)
for (i in 1:length(x)) {
prob[i] <- pnorm(betal[1] + beta[2] * x[i])
}
lines(x, prob, lty = 5)
beta <- as.vector(model3$coefficients)
for (i in 1:length(x)) {
prob[i] <- 1 - exp(-exp(betal[1] + betal[2] * x[i]))
3
lines(x, prob, lty = 1)
legend(1.65, 1, c("LOGIT", "PROBIT", "CLOGLOG"), lty = c(2, 5,
‘I)’ bty = |Inl|)

o =

2 P—
---- LOGIT

T & | --- PROBIT

< o CLOGLOG

)

LL o]

O o |

>_

=

| <

m o ]

<

o

g N

o o
o | ===~
° I

I I I I I I
1.65 1.70 1.75 1.80 1.85 1.90 1.95

DOSE

The curve for the complementary log-log link fits the data better than the other two, as one would expect
from the residual plots and the deviance statistics.
Interpretation of Dose-Response Models: Logistic Link
logit(m(x)) = fo + frx
* By = log odds of response at dose of zero.

* Now let’s compare the model with x; = 1 versus z; = 0.
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Dose x; n; = log(mi/(1—m;))
z+1 (1,$L‘+1)T Bo—i-ﬁl(l‘—f—l) :|Ogg7'r1/(1—71'1)§
x (1,z)7 Bo + Brx = log(mo/(1 — mp)

s =tos(5567R)

* We subtract line 2 from line 1 to isolate 5; and find its interpretation.

* (3 = log odds ratio for response associated with a one unit increase in dose.

summary (model1)$coefficients

Estimate Std. Error z value Pr(>lz])
(Intercept) -60.71745 5.180701 -11.71993 1.007549e-31
dose 34.27033  2.912134 11.76811 5.698445e-32

* What is the OR of response associated with a 0.001 increase in dose?
OR = exp{0.0013} = exp{34.27/1000} = 1.41

* An expression for the median lethal/effective dose:

7m(9) = 0.50 = logit(0.5) = fo + f10 = 0 = —Fo/b1

* Here § = 60.7175/34.2703 = 1.772.

* Can also find an expression for the 100pth percentile of the tolerance distribution (0 < p < 1):

w(0) =p = logit(p) = Bo + 10,

Interpretation of Dose-Response Models: Probit Link
m(x) = (o + frx)
where @ is the CDF of a A/(0, 1) random variable.

* Interpretation of /3 in terms of (u, o) parameters of the tolerance distribution:

—H 1 —fo 1
= —, = — — = —, o
o o o o "= 8 631

summary (model2)$coefficients

Estimate Std. Error z value Pr(>|z])
(Intercept) -34.93527 2.647879 -13.19368 9.541285e-40
dose 19.72794  1.487213 13.26504 3.692396e-40

* An expression for the median lethal/effective dose:

—bo

n(3) =050 = §=—

* Here § = 34.9353/19.7279 = 1.771.
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* Can also find an expression for the 100pth percentile of the tolerance distribution:

1 (p) — Bo

& '(p) = Bo+ B16, = 6 = 3
1

* Exercise: What are .05 and dg.75 the 25th and 75th percentiles of the tolerance distribution from the
probit model?

gqnorm(@.25)
[1] -0.6744898
gnorm(@.75)

[1] 0.6744898

—0.6745 + 34. 2 6745 + 34.
0.6745 + 34,9353 _ | Lo o 067454349353 o

19.7279 19.7279

00.25 =

Interpretation of Dose-Response Models: cloglog Link
Iog(— log(1 — W(T))) = fo + b1z

* Interpretation of 3 parameters is not as natural as in other two models:

—log(1 —7(z +1)) )
—log(1 — 7(x))

Bo = Iog(f Iog(l — ’/T(O))), b= Iog<

summary (model3)$coefficients

Estimate Std. Error z value Pr(>lzl)
(Intercept) -39.57231  3.240290 -12.21258 2.662986e-34
dose 22.04117  1.799365 12.24942 1.692092e-34

* An expression for the median lethal/effective dose:

log(—log(1 —0.5)) — Bo
e}

7(8) = 0.50 = 6 =

* Here 6 = (—0.3665 + 39.5723)/22.0412 = 1.779.

Dose-Response Models: Summary

* Comparison of models with different links must be done through plots of the deviance residuals or fitted
dose response curves.

* Interpretation of regression parameters 3; depend on the link function.
* Consider estimating J,, where 7(d,) = p, 0 < p < 1 to learn about the underlying tolerance distribution.

* Prediction: #(x) = gil(ﬁo + 31)
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* Multiple explanatory variables can be included in dose response models.

WEEK 6
11th to 15th October

Reading week.

WEEK 7
18th to 22nd October

Topic 2f: Topic 2f: Binomial Regression Wrap-Up
1. Summary of Chapter 2.
2. Example: Birdkeeping and Lung Cancer.

3. Example: Birdkeeping and Lung Cancer (continued).

Summary of Chapter 2
Binomial GLM / Logistic Regression Model

Y; ~ BIN(m;,m;), i = 1,...,n independently, with explanatory variables x;:
ue
NERE

¢ Estimation: ﬁ come from Fisher Scoring using R function glm().

* Interpretation: /3, have log OR interpretations (k > 0).

* Wald based Hypothesis Tests of Hy: 8 = Bro versus Ha: 8 # Bro. Under Hy:

Ay —1

(Br = Bro)* (I™(B)) " ~ x*(1)
equivalently, ﬁk(_;ko ~ N(0,1) where se(Bk) = \/Ikk(ﬁ).
se( Pk

* Confidence Interval for a single S3:

Br + 21—a)2 se(fr) where se(3,) = \/I**(B)
* Deviance/LR based Hypothesis Tests for nested models:
Hop: Bp = --- = Bq—1 = 0vs Hy: atleastone of 3,,...,8,-1 # 0

using
AD = Dy — Dp ~ x*(q — p) under Hy

* Deviance Residuals (should be iid A/(0, 1) for a well-fitting model):

.Zn:di = D(#) =2 [Zn: <yi |og(m‘z;i> + (mi — ui) '°g<mm(1_y7r)>ﬂ

where

76



CONTENTS 77

* Confidence Intervals for n; = x, B:

x] B£1.96\/a] I-1(B)x; = (i, Mu)

then transform ends of the interval to get a CI for OR, 7, etc.
* Bioassay experiments:

- [ interpretation depends on link function.

- Calculation of §,: dose that gives pth percentile of response.

The Model Fitting Process

The Model Fitting Process

0. Exploratory Data Analysis.

1. Model Specification — Select a probability distribution for the response variable and an equation
linking the response to the explanatory variables.

2. Estimation of the parameters of the model.
3. Model checking — How well does the model fit the data?

4. Inference — Interpret the fitted model, calculate confidence intervals, conduct hypothesis tests.

Let’s apply this process to an example using logistic regression.

Example: Birdkeeping and Lung Cancer
Birdkeeping and Lung Cancer

A 1972 to 1981 health survey in The Hague, Netherlands, discovered an association between keeping pet
birds and increased risk of lung cancer. To investigate birdkeeping as a risk factor, researchers conducted
a case-control study of patients in 1985 at four hospitals in The Hague (population 450,000). They
identified 49 cases of lung cancer among the patients who were registered with a general practice, who
were age 65 or younger and who had resided in the city since 1965. They also selected 98 controls from a
population of residents having the same general age structure.

From Ramsey, F.L. and Schafer, D.W. (2002). The Statistical Sleuth: A Course in Methods of Data Analysis
(2nd ed) https://cran.r-project.org/web/packages/Sleuth3/Sleuth3.pdf

Birdkeeping and Lung Cancer Dataset

Exploratory Data Analysis

* Primary Research Question: Is there an association between birdkeeping and an increased risk of lung
cancer?


https://cran.r-project.org/web/packages/Sleuth3/Sleuth3.pdf

CONTENTS

LC binary = Whether subject has lung cancer (the response)
FM Dbinary  Sex of subject (Female or Male)
SS binary  Socioeconomic status (High or Low)
BK binary Indicator for birdkeeping (Bird or NoBird)
AG integer Age of subject (years)
YR integer Years of smoking prior to diagnosis or examination
CD integer Average rate of smoking (cigarettes per day)
Subject LC FM SS BK AG YR CD
1 LungCancer Male Low Bird 37 19 12
2 LungCancer Male Low Bird 41 22 15
3 LungCancer Male High NoBird 43 19 15
4 LungCancer Male Low Bird 46 24 15
5 LungCancer Male Low Bird 49 31 20
LungCancer NoCancer Total
Bird 33 34 67
NoBird 16 64 80
Total 49 98 147
1.00-
0.75-
0.50 -
0.25-
0.00 -

* So there is the suggestion of an association, but we need to take other potentially important explanatory
variables into account.

Proportion of Lung Cancer (top) versus No Cancer (bottom) for Binary Explanatory Variables
(BK = birdkeeping, FM = sex, SS = socioeconomic status)

LungCancer

—

~

OR = ¢ =

1
NoCancer

LC

(33)(64)
W = 3.882353
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1.00- 1.00- 1.00-
0.75- 0.75- 0.75-
0.50- 0.50- 0.50-
0.25- 0.25- 0.25-
0.00- 0.00- 0.00-

Bilrd NoIIEsird Ferrl1ale Mallle Hilgh L(;w
BK FM SS

Proportion of Lung Cancer (top) versus No Cancer (bottom) for Combinations of Binary Explanatory Variables
(BK = birdkeeping, FM = sex, SS = socioeconomic status)
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' ' ' ' ' ' ' ' ' ' ' '
Bird.Female  NoBird.Female Bird.Male NoBird.Male Bird.High NoBird.High Bird.Low NoBird.Low HighFemale  Low.Female High.Male Low.Male

interaction(BK, FM) interaction(BK, SS) interaction(SS, FM)

Model Specification
* We will fit logistic regression models to the data using R

¢ The full main effects model is:

logit(m;) = Bo + Brxin + Boxio + Baxiz + Baxis + Psis + Petis
where

m; = P(subject ¢ has lung cancer) = LC
x;1 = I{Birdkeeper} = BK
Lo = I{Male} = FM
23 = [{Low SES} = SS
x4 = Age of subject (years) = YR
x;5 = Years of smoking = AG
x;6 = Cigarettes per day = CD

Estimation and Model Checking
Model Building Plan
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* First, we will consider models that do not include the birdkeeping BK = x;; explanatory variable.

— i.e., look for associations between lung cancer and other explanatory variables.

— Find the best fitting model without birdkeeping.

* Then find the best model that includes birdkeeping.

The model fitting process is iterative and can be somewhat subjective.

* Unclear whether Age and Sex should be considered due to possible matching in the design of the case

control study.

myGlm1: Main Effects Model (no BK)

myGlml <- glm(LC ~ FM + SS + AG + YR + CD, family = binomial)
summary (myGlm1)

Call:
glm(formula = LC ~ FM + SS + AG + YR + CD, family = binomial)

Deviance Residuals:
Min 1Q  Median 30 Max
-1.3910 -0.9718 -0.5519 1.1733  2.5020

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) ©.37895 1.67206 0.227 ©.82070

FMMale -0.74923 0.50501 -1.484 0.13792

SSLow 0.07303 0.43893 0.166 0.86785

AG -0.05799 0.03432 -1.690 0.09112 .

YR 0.07955 0.02636 3.018 0.00255 **

CD 0.01978 0.02422 0.817 0.41421

Signif. codes: @ 'x*x%x' 0.001 'x%x' 0.01 'x' .05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 187.14 on 146 degrees of freedom
Residual deviance: 165.87 on 141 degrees of freedom
AIC: 177.87

Number of Fisher Scoring iterations: 5

Example of a Wald Test for a Single Parameter
Is years of smoking associated with lung cancer?

Hp: 84 = 0versus Hy: B4 #0
Wald-based test statistic: (t ~ A(0,1) under Hp):

o Bi—0 _ 0.07955

— = =3.018
se(fy)  0.02636
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Now find the p-value by comparing to Z ~ N (0, 1):

p=2P(Z > |t|) = 2P(Z > 3.018) = 0.0026

2 * (1 - pnorm(3.018))
[1] 0.002544489

Therefore, reject the null hypothesis that smoking is not associated with lung cancer (after adjustment for
sex, socioeconomic status, age, and cigarettes per day).

myGlm2: Drop SS

myGlm2 <- update(myGlml, ~. - SS)
summary (myGlm2)

Call:
glm(formula = LC ~ FM + AG + YR + CD, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.4134 -0.9744 -0.5430 1.1749 2.5123

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.46101 1.59688 0.289 0.77282
FMMale -0.76832 0.49178 -1.562 0.11821
AG -0.05858 0.03415 -1.715 0.08628 .
YR 0.08027 0.02603 3.083 0.00205 **
CD 0.01959 0.02420 0.810 0.41820

Signif. codes: @ '**x' 0.001 '*x' 0.01 'x' .05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 187.14 on 146 degrees of freedom
Residual deviance: 165.90 on 142 degrees of freedom

AIC: 175.9

Number of Fisher Scoring iterations: 5

myGIlm3: Drop CD

myGlm3 <- update(myGlm2, ~. - CD)
summary (myGlm3)

Call:
glm(formula = LC ~ FM + AG + YR, family = binomial)
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Deviance Residuals:

Min 10  Median
-1.2597 -0.9794 -0.5462
Coefficients:

Estimate Std.
(Intercept) 0.82886 1
FMMale -0.73638 Q
AG -0.06363 0
YR 0.08776 0

Signif. codes: @ '**x' Q.
(Dispersion parameter for

Null deviance: 187.14
Residual deviance: 166.55

AIC: 174.55

Number of Fisher Scoring i

myGlm4: Drop FM

myGlm4 <- update(myGlm3, ~.

summary (myGlm4)

Call:

001 'xx' 0.01

'x' 0.05 '.

30 Max
1.1718  2.4894
Error z value Pr(>|z]|)
.52662 ©0.543 0.587172
.48914 -1.505 0.132210
.03359 -1.894 0.058195 .
.02452  3.579 0.000344 x*x*

0.

1

binomial family taken to be 1)

on 146 degrees of freedom
on 143 degrees of freedom

terations: 5

- FM)

glm(formula = LC ~ AG + YR, family = binomial)

Deviance Residuals:
Min 1Q
-1.2933 -0.9869

Median
-0.5682

Coefficients:

3Q
1.2448

Max

2.5943

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.67653 1.
AG -0.06568 0.
YR 0.07815 0.

Signif. codes: @ '**x' Q.

49597
03291
02321

0.452

001 'xx' 0.01

0.651100

-1.996 0.045976 =
3.368 0.000758 **xx%

'x' 0.05 '.

0.

1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 187.14 on 146 degrees of freedom
on 144 degrees of freedom

Residual deviance: 168.83
AIC: 174.83

Number of Fisher Scoring i

terations: 5

1

1

82
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myGIm5: Add BK (Birdkeeping)

BK <- factor(BK, levels =

myGlm5 <- update(myGlm4, ~.

summary (myGlm5)

Call:

c("NoBird", "Bird"))

# Make 'no bird' the ref level

+ BK) # Now add bird keeping

glm(formula = LC ~ AG + YR + BK, family = binomial)

Deviance Residuals:
Min 1Q  Median
-1.5466 -0.8649 -0.4911

Coefficients:
Estimate Std.

(Intercept) -1.03359 1
AG -0.04610 0
YR 0.07485 0.
BKBird 1.37656 0

Signif. codes: @ '**x' Q.
(Dispersion parameter for

Null deviance: 187.14
Residual deviance: 156.22

AIC: 164.22

Number of Fisher Scoring i

30 Max
0.9763 2.2584

Error z value Pr(>|z|)

.66069 -0.622 0.533686
.03430 -1.344 0.178952

02296  3.261 0.001111

x*

.40073  3.435 0.000592 ***

001 'x%x' 0.01 'x' ©.05 '.' 0.1 ' ' 1

binomial family taken to be 1)

on 146 degrees of freedom
on 143 degrees of freedom

terations: 5

myGlm6: Add YR:BK and AG:YR Interactions

myGlmé <- update(myGlm5, ~.

summary (myGlmé)

Call:

+ BK:YR + AG:YR) #

Try interaction terms

glm(formula = LC ~ AG + YR + BK + YR:BK + AG:YR, family = binomial)

Deviance Residuals:
Min 1Q Median
-1.6689 -0.8118 -0.4656

Coefficients:
Estimate Std.

30 Max
0.9643 2.2142

Error z value Pr(>|z|)

(Intercept) -6.332602 5.154442 -1.229 0.219
AG 0.047055 0.086231 0.546 0.585
YR 0.294877 ©.197828  1.491 0.136
BKBird 1.101153  1.291672 0.853 0.394
YR:BKBird 0.008546 0.037603  0.227 0.820
AG:YR -0.003768 ©.003215 -1.172 0.241
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 187.14 on 146 degrees of freedom
Residual deviance: 154.60 on 141 degrees of freedom
AIC: 166.6

Number of Fisher Scoring iterations: 5

Example of a Deviance Test for Nested Models

Hjp: Model 5 is adequate compared to model 6 versus Hy: Model 5 is not adequate. Hy: 14 = 45 = 0 versus
HAZ 514 75 0or 545 7é 0.

Deviance/LR test statistic (AD ~ x?(2) under Hp):
AD = Dy — Dp = Ds — Dg = 156.22 — 154.60 = 1.62
Now find the p-value by comparing to x?(2):

p=P(x*(2) > 1.62) = 0.45

1 - pchisq(1.62, 2)
[1] 0.4448581

Therefore we do not reject the null hypothesis that model 5 is adequate. We conclude that the interactions
are not necessary.

Summary of Deviance Tests

anova(myGlm5, myGlmé6)

Analysis of Deviance Table

Model 1: LC ~ AG + YR + BK

Model 2: LC ~ AG + YR + BK + YR:BK + AG:YR
Resid. Df Resid. Dev Df Deviance

1 143 156.22

2 141 154.60 2 1.6163

1 - pchisq(1.6163, 2)

[1] 0.4456818

* Do not reject the null hypothesis that myGlm5 (no interactions) is adequate compared to myGlmé (interac-
tions)

anova(myGlm4, myGlm5)
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Analysis of Deviance Table

Model 1: LC ~ AG + YR
Model 2: LC ~ AG + YR + BK
Resid. Df Resid. Dev Df Deviance
1 144 168.83
2 143 156.22 1 12.612

1 - pchisq(12.612, 1)

[1] 0.0003832782
* Reject the null hypothesis that myGlm4 (no BK) is adequate compared to myGLlm5.

myGLMS5: Deviance Residuals

Normal Q-Q Plot
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Final Model: myGLM5b: BK + AG + YR
logit(m;) = Bo + Bizi1 + Pazia + Bsis

# put explanatory variables in expected order
myGlm5b <- glm(LC ~ BK + AG + YR, family = binomial)
summary (myGlm5b) $coefficients

Estimate Std. Error z value Pr(>|z])
(Intercept) -1.03359488 1.66069096 -0.6223885 0.5336864701
BKBird 1.37655906 0.40072983 3.4351300 0.0005922696
AG -0.04609820 0.03429953 -1.3439892 0.1789518774
YR 0.07485289 0.02295533 3.2608062 0.0011109596

summary (myGlm5b) $cov.unscaled

(Intercept) BKBird AG YR
(Intercept) 2.75789447 -0.2110100613 -0.0520288121 0.0106701054
BKBird -0.211071006 ©0.1605843947 0.0019968775 0.0002914915
AG -0.05202881 ©0.0019968775 0.0011764579 -0.0004893738

YR 0.01067011 ©.0002914915 -0.0004893738 ©0.0005269473

85
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Inference and Prediction

Find and estimate and 95 % confidence interval of the Odds Ratio of lung cancer in birdkeepers versus non-
birdkeepers.

Estimate: . .
OR = exp{f1} = exp{1.3766} = 3.96

95 % Confidence Interval:

exp{B1 £ 1.96se(f1)} = exp{1.3766 + 1.96(0.4007) }
= (exp{0.5912}, exp{2.1620})
= (1.81,8.69)

In this sample, what is the probability that a 50-year-old, non-smoking, non-birdkeeper has lung cancer?
Estimate:

7 = expit(Bo + 5084)
= expit(—1.0336 + 50(—0.0461))
= expit(—3.3385)
=0.03427 or 3.43 %

95 % Confidence Interval:

Var(Bo + 5084) = Var(fBo) + 502 Var(B4) + 2(50) Cov(fo, Ba)
= 2.579 + 50%(0.001176) -+ 100(—0.05203)
= 0.4949

expit(—3.3385 =+ 1.961/0.4949) = (0.008845,0.1237) or (0.88 %, 12.37 %)

# Inference and Prediction
exp(myGlmsb$coefficients) # Odds Ratios

(Intercept) BKBird AG YR
0.3557259  3.9612477 ©.9549482 1.0777256

# 95% CI, OR for lung cancer, birdkeepers vs

# non-birdkeepers, controlling for age and years of smoking

exp(myGlm5b$coef[2] + c(=1, 1) * gnorm(@.975) * sqrt(summary(myGlm5b)$cov.unscaled[2,
21))

[1] 1.806052 8.688281

# 95% CI, OR for lung cancer, one year increase in smoking,

# controlling for age and birdkeeping status

exp(myGlm5b$coef[4] + c(=1, 1) * gnorm(@.975) * sqrt(summary(myGlm5b)$cov.unscaled[4,
41))

[1] 1.030312 1.127322

expit <- function(x) {
exp(x)/(1 + exp(x))
}

x <- as.matrix(c(1, @, 50, @), ncol = 1) # 50-year-old non-smoker, non-birdkeeper
expit(t(x) %*% myGlmSb$coefficients)
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[,1]
[1,] 0.03427361

v <- summary(myGlm5b)$cov.unscaled
t(x) %*%% v %*% X

[,1]
[1,] 0.496158

expit(t(x) %x% myGlmSb$coefficients + c(-1, 1) * qnorm(0.975) *
sqrt(t(x) %*x% v %*% x))

[1] 0.008844516 ©.123690591

Inference

* Controlling for age and years of smoking, the odds ratio of getting lung cancer for birdkeepers vs non-
birdkeepers is 3.96 (1.81, 8.69).

* Controlling for age and birdkeeping, the odds ratio of getting lung cancer for each additional year of
smoking is 1.08 (1.03,1.13).

Prediction

* In this study, the probability that a 50-year-old, non-smoking, non-birdkeeper has developed lung cancer is
3.43% (0.88 %, 12.37%).

* Does this estimate extend to the general population?

Topic 3a: Introduction to Poisson GLMs

1. Setting up a Poisson GLM for Counts.

* Review of the Poisson distribution as a member of the exponential family.
* Specification of a Poisson GLM (i.e., Log Linear Regression Model).

¢ Derivation of Poisson deviance and deviance residuals.
2. Regression for Poisson Processes.

* Definition of a Poisson Process.
* Log Linear Regression Model for a Time Homogeneous Poisson Process.

¢ Introduction of the offset term.

The Poisson Distribution
* Recall for Y ~ POI(u):

fly) = y: = exp{ylog(p) — p—log(y))}  y=0,1,2,...
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* The Poisson is a member of the exponential family with:
O=log(n), ¢=1, b =¢"=p
a(¢) =1,  c(y:¢) = —log(y!)

¢ With mean and variance:

¢ And Canonical link:

Poisson Likelihood
* Now suppose we have a random sample of size n:
Y; ~POI(p;), i=1,2,....,n
* Response vector: Yy = (Y1, Y2, - -, Yn) .
e Mean vector: pt = (fi1, fi2, -, fin) -
¢ The likelihood and log-likelihood are:
no Ve Hi
Hi €
Lip) =[] =
= Y

n

U, y) = Z(yz log(11;) — pi — log(yi!))

i=1
Log Linear Regression
* Explanatory variables: @; = (1, z1,...,Zip—1) ,i=1,...,n.
* Regression parameters: 8 = (8o, B1,---,Bp-1) -
* Using the Canonical link (i.e., log link):
p—1
log(p) = 2] B =3 w8,
j=0

The use of the log link gives the term log linear regression.

We can obtain the log-likelihood in terms of 3 by substitution:

v

Il
-

0(Bsy) =) (yilog(p)i — pi — log(yi!))

(2

S

(viz; B — exp{z] B} — log(y!))
=1

88
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Estimation of 3 from log linear regression

* The j™ contribution to the Score vector is:

[ n
% — Z(ylx” — i; exp{x] B})
j

i=1
* The (j, k) element of the Information Matrix is:

020 =
_ 85]- 95, = Z(wi]wik exp{w?ﬁ})

* These can also be found using general exponential family results.
* Use the above to estimate 3 via Fisher Scoring.

e Use glm() function in R with family=poisson(link=1log).

Inference for 8 from log linear regression: Wald Tests
Ho: Bk = Bro versus Ha: B # Bro

* The general Wald Result for scalar 3y, is:
(Br — 5k0)2(1kk(ﬁ))_1 ~ X(n)
Bk — Bro

se(Bk

~ N(0,1) where se(Bk) = Ikk(fé)-

equivalently

* And we can find the p-value of the test using:

< N Bw) where U ~ A/(0,1)

se(fr)

* The summary () output gives the test statistics and p-values for testing Hy: 8 = 0 vs Ha: [ # 0.

Poisson Deviance/Likelihood Ratio Tests
* Let j1; be the MLE under the saturated model (i.e., ji; = y;).
* Let /i; be the MLE under a p-dimensional constrained model.

¢ Recall the Likelihood Ratio or Deviance Statistic has the form:

D= -2 Iog(ﬁggg) = 2(5(/1) - E(ﬂ)) ~ X%n—p)

asymptotically under the assumption that the constrained model is appropriate.

¢ For the Poisson we have:

D = 2(e() —

))

=

89
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¢ Note that the Deviance Statistic has the same form as in the Binomial case:

D= ZZOi Iog(%)

provided an intercept is included in the model so that > (y; — ;) = 0.

Poisson Deviance/Likelihood Ratio Tests

e Use the Deviance to test nested models:
— Hj: the null model with p parameters is adequate versus
log(pi) = Bo + Prxri + - + Bp_1T1p—1
— Hy: the alternative model with ¢ parameters (p < ¢)
log(pi) = Po + Pravi + -+ Bp_1T1p—1 + - + Bg—1T14-1

— With test statistic:

AD = Do — DA ~ X%qu) under Ho

— The p-value for the test is given by:
p-value = P(X%q_p) > AD)

Deviance Residuals

¢ We can write the Deviance as a sum:

* The Deviance Residuals are given by:

D

ri = sign(y; — 1)/ |di

and are approximately N (0, 1) if Hyp holds.

Regression for Poisson Processes

Counting Process N (t)

A counting process N (t) is any non-decreasing integer function of time such that N(0) = 0 and N (¢) is
the number of events occurring in (0, ¢].

» Example: Suppose events occurred at times (2,4, 5,7):
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Poisson Process N(t)
A counting process N (t) is a Poisson process if it satisfies:
1. Independent increments: For s; < t; < s < ta:
N(t1) — N(s1) = # events in (sy, t1]

is independent of
N(t2> _ N(52) = # events in (32’t2}

2. The distribution of N (¢) the number of events occurring over (0, ¢] is given by:

P(N(t) =n;\) = %ﬁm (n=0,1,2,...)

Regression for Poisson Processes N (t)

* N(t) is a special kind of Poisson random variable with:
E[N(1)] = u(t) = At
* Use the log link to do regression:
log(p(t)) = log(At) = log(\) + log(t)

* )\ = Rate parameter.

* t = Length of observation (data).

* Since ) is constant (not a function of ¢t) we call this a time homogeneous poisson process.
For each subjecti = 1, ..., n we observe:

* N,;(t;) = the number of events observed over (0, ¢;].

* Explanatory variables: @; = (1,21, ..., Zip—1) "
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Log Linear Regression Model for a Time Homogeneous Poisson Process

log(pi(t;)) = log(X;) + log(t;)
=z B + log(t;)

* The term log(¢;) is called an offset term.
* It explains some variation in the event counts /V; across subjects due to differing lengths of observation ¢;.

WEEK 8
25th to 29th October

Topic 3b: Ship Damage Example

1. Fitting the main effects log linear model:

¢ Introduction of the data set.
* Model 1: main effects + offset(log(months)).

2. Model selection:
¢ Use Deviance tests of nested non-saturated models.
3. Model interpretation:

e Show that jj has log relative rate interpretation.

* Wald based confidence intervals and hypothesis tests.

Example: Ship Damage Incidents

Example: Ship Damage Incidents

* McCullagh and Nelder (1989) discuss the analysis of a data set which records the number of times
a certain type of damage incident occurs in cargo ships.

» Damage is caused by waves and occurs in the forward section of various cargo carrying vessels

* In order to prevent this type of damage from occurring in the future, the investigators want to
identify risk factors including:

— Ship type (A-E),
— Year of construction (1960-1964; 1965-1969; 1970-1974; 1975-1979),
— Period of operation (1960-1974; 1975-1979).

Ship Damage Data Set
In the dataset we have adopted the following coding conventions:
* type: The ship type variable is (1, 2, 3, 4, 5) for ship types A, B, C, D, and E, respectively

* cyr: The year of construction variable is (1, 2, 3, 4) for eras 1960-1964, 1965-1969, 1970-1974, and
1975-1979, respectively

* oyr: The year of operation variable is 1 for 1960-74 and 2 for 1975-1979
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* months: The total number of months of operation for ships of that type and construction year during the
period of operation

* y: The number of damage incidents for ships of that type and construction year during the period of
operation

Ship Damage Data Set (ship.dat)

First ten rows of ship.dat:

type cyr oyr months
1 1 1 127

2 63

1 1095

2 1095

1 1512 6

2

2

1

A w o oK

3353 18
2244 11
44882 39

2 17176 29
1 28609 58

— O NoOo Ul wpNn =
N NN = — a4
N = = D wwdhpN =

R Code & Output (Models 1 and 2)

ship.dat <- read.table("ship.dat", header = T)
ship.dat$typef <- factor(ship.dat$type)
ship.dat$cyrf <- factor(ship.dat$cyr)
ship.dat$oyrf <- factor(ship.dat$oyr)

ship.dat

modell <- glm(y ~ typef + cyrf + oyrf + offset(log(months)),
family = poisson, data = ship.dat)
summary (model1)

model2 <- glm(y ~ typef + cyrf + oyrf + log(months), family = poisson,
data = ship.dat)
summary (model2)

Model 1: Main effects + offset(log(months))
* Time homogenous Poisson process: E[N;(t;)] = p:(t;) = At;.

* Log linear regression model:

log (i (t:)) = log(\i) + log(t:) = @ B + log(t:).
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* Ship Damage main effects model:

94

ship type

log(1i(t:)) = Bo + Brzin + Bowia + Baxiz + Bawia +
Bsxis + Bewic + Prrir +  Psxis  +log(ti),

year of construction operation year offset

where

Ti1 = H{type B},
T2 = ]I{type C},
x;3 = [{type D},
x4 = I{type E},

Model 1: Main effects + offset(log(months))

summary (model1)

Call:

Ti5 = ]1{1965-1969},
2 = 1{1970-1974},
zir = 1{1975-1979},

glm(formula = y ~ typef + cyrf + oyrf + offset(log(months)),

family = poisson, data

Deviance Residuals:
Min 1Q  Median
-1.6768 -0.8293 -0.4370

Coefficients:

Estimate Std.
(Intercept) -6.40590 0
typef2 -0.54334 0
typef3 -0.68740 0
typef4 -0.07596 0
typef5 0.32558 0
cyrf2 0.69714 0
cyrf3 0.81843 0
cyrf4 0.45343 0
oyrf2 0.38447 0

Signif. codes: @ '**x' Q.

(Dispersion parameter for

= ship.dat)
3Q Max
0.5058 2.7912

Error z value Pr(>|z|)

.21744 -29.
.17759  -3.
.32904 -2.
.29058 -0.
.23588 1
.14964 4
.16977 4
.23317 1
.11827 3
001 'xx'

460
060
089
261

.380
.659
.821
.945
. 251

0.01

< 2e-16
0.00222
0.03670
0.79377
0.16750
3.18e-06
1.43e-06

KA*X
**

KA*
*k%k

0.05182 .

0.00115

'x' 0.05

**

poisson family taken to be 1)

Null deviance: 146.328 on 33 degrees of freedom
Residual deviance: 38.695 on 25 degrees of freedom

AIC: 154.56

Number of Fisher Scoring iterations: 5

Model 2: Main effects + log(months)
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summary (model2)

Call:
glm(formula = y ~ typef + cyrf + oyrf + log(months), family = poisson,
data = ship.dat)

Deviance Residuals:
Min 1Q  Median 30 Max
-1.6580 -0.8939 -0.4900 0.4676  2.7435

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.5940 0.8724 -6.412 1.43e-10 *xx
typef2 -0.3499 0.2702 -1.295 ©.19539
typef3 -0.7631 0.3382 -2.257 0.02404 *
typef4 -0.1355 0.2971 -0.456 0.64842
typef5 0.2739 0.2418 1.133 0.25719
cyrf2 0.6625 0.1536  4.312 1.61e-05 **x
cyrf3 0.7597 0.1777  4.276 1.90e-05 *xx
cyrf4 0.3697 0.2458 1.504 ©0.13259
oyrf2 0.3703 0.1181 3.134 0.00172 *x
log(months) 0.9027 0.1018 8.867 < 2e-16 **xx%
Signif. codes: @ 'xxx' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 614.539 on 33 degrees of freedom
Residual deviance: 37.804 on 24 degrees of freedom
AIC: 155.67

Number of Fisher Scoring iterations: 5

Summary of Model 1 versus Model 2
* log( - ) is the canonical link for the Poisson, so it is the default when family=poisson.
¢ Model 1: main effects + offset(log(months)): 8 = log(t;).

— The offset explains some variation in the number of damage incidents due to different amounts of
time at risk.

 Model 2: main effects + log(months): ' 3 log(t;).

— Examine (3, the coefficient for Log(months).
— Conduct a Wald-based test of Hy: B9 = 1 versus Ha: (39 # 1:

By — 1 9027 — 1
p=2P(Z > M =2P(Z>M)=2P(Z> |—0.9558|) = 0.34.
se(fBo) 0.1018

Therefore, do not reject Hy: B9 = 1.

* We will not typically do this check and just use of fset(log(ti)) since it’s implied through the assumption
of a time homogenous Poisson Process.
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R Code (Models 3a, 3b, 3c)

Now, consider various models nested within model 1 to see if any of the main effects are not significant.

# testing for the association between ship type and

# frequency of events

model3a <- glm(y ~ cyrf + oyrf + offset(log(months)), family = poisson,
data = ship.dat)

model3a$deviance

model3a$df.residual

1 - pchisq(model3a$deviance - modell$deviance, model3a$df.residual -
model1$df.residual)

# testing for association between year of construction and

# event frequency

model3b <- glm(y ~ typef + oyrf + offset(log(months)), family = poisson,
data = ship.dat)

model3b$deviance

model3b$df.residual

1 - pchisg(model3b$deviance - modell$deviance, model3b$df.residual -
model1$df.residual)

# testing for the association between year of operation and

# event frequency

model3c <- glm(y ~ typef + cyrf + offset(log(months)), family = poisson,
data = ship.dat)

model3c$deviance

model3c$df.residual

1 - pchisq(model3c$deviance - modell$deviance, model3c$df.residual -
model1$df.residual)

Model 3a: cyrf + oyrf + offset(log(months))
¢ Use this model to test:

— Hy: Type of Ship is unimportant (i.e., 5; = 82 = 83 = B4 = 0).
— Hy: B1#0o0r--- or By #0.

model3a <- glm(y ~ cyrf + oyrf + offset(log(months)), family = poisson,
data = ship.dat)
model3a$deviance

[1] 62.36534
model3a$df.residual
[11 29

1 - pchisq(model3a$deviance - modell$deviance, model3a$df.residual -
model1$df.residual)

[1] 9.299568e-05

AD=Dyg— Dy ~ Xi under Hy.
p="P(x] > (62.365 — 38.695)) < 0.001.
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* Reject the null hypothesis of no variation in the accident rate across ships of different types.

* This is strong evidence of a need to adjust for the difference in the accident rates between ship types.

Model 3b: typef + oyrf + offset(log(months))
¢ Use this model to test:

— Hy: Construction year is unimportant (i.e., 85 = 8 = 87 = 0).
— Hp: B5#0o0r--- or 57 #0.

model3b <- glm(y ~ typef + oyrf + offset(log(months)), family = poisson,
data = ship.dat)

model3b$deviance

[1] 70.10294

model3b$df.residual

(1] 28

1 - pchisq(model3b$deviance - modell$deviance, model3b$df.residual -
model1$df.residual)

[1] 6.974977e-07
* Reject the null hypothesis of no variation in the accident rate across ships of different construction years.

Model 3c: typef + cyrf + offset(log(months))
¢ Use this model to test:

— Hj: Operation year is unimportant (i.e., 3 = 0).
— Hy: ﬁg 7é 0.

model3c <- glm(y ~ typef + cyrf + offset(log(months)), family = poisson,
data = ship.dat)

model3c$deviance

[1] 49.35519

model3c$df.residual

(1] 26

1 - pchisq(model3c$deviance - modell$deviance, model3c$df.residual -
model1$df.residual)

[1] 0.001094692

* Reject the null hypothesis of no variation in the accident rate across ships of different periods of operation.
* We are unable to remove any of the main effects from the model (all are statistically significant).

* Next, consider adding interaction effects.
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R Code (Models 4, 5, 6)

# testing for the interaction between type of ship and year

# of construction

model4 <- glm(y ~ typef + cyrf + oyrf + typef * cyrf + offset(log(months)),
family = poisson, data = ship.dat)

model4$deviance

model4$df.residual

1 - pchisq(modell$deviance - model4$deviance, modell1$df.residual -
model4$df.residual)

summary (model4)
mrho <- summary(model4, corr = T)$correlation
mrho

# testing for the interaction between type of ship and year

# of operation

model5 <- glm(y ~ typef + cyrf + oyrf + typef * oyrf + offset(log(months)),
family = poisson, data = ship.dat)

1 - pchisq(modell$deviance - model5%$deviance, modell1$df.residual -
model5%$df.residual)

# testing for the interaction between year of construction

# and operation

model6 <- glm(y ~ typef + cyrf + oyrf + cyrf * oyrf + offset(log(months)),
family = poisson, data = ship.dat)

1 - pchisq(modell$deviance - model6$deviance, modell1$df.residual -
model6$df.residual)

# plot the residuals

ship.dat$rdeviance <- residuals.glm(modell, type = "deviance")

plot(modeli1$fitted.values, ship.dat$rdeviance, ylim = c(-4, 4),
xlab = "FITTED VALUES", ylab = "DEVIANCE RESIDUALS")

abline(h = -2)

abline(h = 2)
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Model 4: typef + cyrf + oyrf + typef*cyrf + offset(log(months))
¢ Use this model to test:

— Hj: the typef*cyrf interaction is unimportant (Model 1).
— Hj: (model 4).

model4 <- glm(y ~ typef + cyrf + oyrf + typef * cyrf + offset(log(months)),
family = poisson, data = ship.dat)

model4$deviance

[1] 14.58688

model4$df.residual

(11 13

1 - pchisq(modell$deviance - model4$deviance, modell1$df.residual -
model4$df.residual)

[1] 0.01966268

AD=Dyg— Dy ~ X%Q under Hy.
p= IED()(f2 > (38.695 — 14.587)) < 0.0197.
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— Reject the null hypothesis that the main effects model is adequate.

— That is, we would choose model 4 over model 1.

summary (model4)

Call:

glm(formula = y ~ typef + cyrf + oyrf + typef * cyrf + offset(log(months)),

family = poisson, data = ship.dat)

Deviance Residuals:

Max

2.53827

004

.003
.003
.000

000

.003
.003
.003

0.

99711
.99795
.99794
.99995
.99994
.99783
.99778
.99780

Min 1Q Median 30
-1.99643 -0.09176 -0.00008 0.13849
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -23.9891 6625.5245 -0.
typef2 17.0506 6625.5245 0
typef3 17.0863 6625.5245 0@
typef4 -0.5962 9331.1044 0
typef5 0.8799 11522.0954 0.
cyrf2 18.0324 6625.5245 0
cyrf3 18.3969 6625.5245 0
cyrf4 18.2860 6625.5245 0@
oyrf2 0.3850 0.1186 3.

typef2:cyrf2  -17.3620 6625.5245 -0.
typef3:cyrf2 -18.6108 6625.5246 -0.
typefd:cyrf2  -18.4024 11467.2826 -0.
typef5:cyrf2 0.4496 11522.0955 ©.
typef2:cyrf3  -17.6110 6625.5245 -0.

typef3:cyrf3  -17.6160 6625.5246 -0.
typef4:cyrf3 1.0922 9331.1044 0.
typef5:cyrf3  -0.8285 11522.0954 0.

typef2:cyrf4  -17.7124 6625.5245 -0.
typef3:cyrf4 -17.3813 6625.5246 -0.
typef4:cyrf4 -0.3254 9331.7044 0.
typef5:cyrf4 -1.8570 11522.0955 0.

Signif. codes: @ 'xxx' 0.001 'xx' 0.01

(Dispersion parameter for poisson family taken to be 1)

246
003
003
002
000
003
003
000
000
003
003
000
000

!

S O OO OO0

0.

.00117
.99791
.99776
.99872
.99997
.99788
.99788
.99991
.99994
.99787
.99791
.99997
.99987

05 '.

**k

0.

Null deviance: 146.328 on 33 degrees of freedom

Residual deviance:
AIC: 154.45

Number of Fisher Scoring iterations: 17

* Huge standard errors!
* This model is overparameterized!
* Twelve interaction terms.

* Type 4: no events for cyr 1 or 2.

14.587 on 13 degrees of freedom

1

1

1

100
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Model 5: typef + cyrf + oyrf + typef*oyrf + offset(log(months))
* Use this model to test:

— Hj: the typef*oyrf interaction is unimportant (Model 1).
— Hy: (model 5).

model5 <- glm(y ~ typef + cyrf + oyrf + typef x oyrf + offset(log(months)),
family = poisson, data = ship.dat)

1 - pchisq(modell1$deviance - model5%$deviance, model1$df.residual -
model5$df.residual)

[1] 0.2936317

— Do not reject the null hypothesis that the main effects model is adequate.

— The interaction between ship type and year of operation is not significant.

Model 6: typef + cyrf + oyrf + cyrfxoyrf + offset(log(months))
* Use this model to test:

— Hj: the cyrf*oyrf interaction is unimportant (Model 1).
— Hj,: (model 6).

model6 <- glm(y ~ typef + cyrf + oyrf + cyrf * oyrf + offset(log(months)),
family = poisson, data = ship.dat)

1 - pchisq(modell$deviance - model6%$deviance, modell1$df.residual -
model6$df.residual)

[1] 0.4091268

— Do not reject the null hypothesis that the main effects model is adequate.

— The interaction between year of construction and year of operation is not significant.

Model 1: typef + cyrf + oyrf +offset(log(months))
* Conclude that the best fitting model is the main effects model.

* Check the residual plot:
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- f = eXP{fB?ﬁA + |°g(ti)}'
- D=, 2l0g( %) = X, ds.
- 7 = sign(yi — fui)/Idil.

Interpretation of Model 1: Main effects + offset(log(months))

modell <- glm(y ~ typef + cyrf + oyrf + offset(log(months)),
family = poisson, data = ship.dat)
summary (model1)

Call:
glm(formula = y ~ typef + cyrf + oyrf + offset(log(months)),
family = poisson, data = ship.dat)

Deviance Residuals:
Min 10 Median 30 Max
-1.6768 -0.8293 -0.4370 0.5058 2.7912

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.40590 0.21744 -29.460 < 2e-16 **xx%
typef2 -0.54334 0.17759 -3.060 0.00222 *x

102
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typef3 -0
typef4 -0
typef5 0.
cyrf2 0
cyrf3 0.
cyrf4 0
oyrf2 0

Signif. codes:

.68740
.07596

.69714

.45343
.38447

32558

81843

[SEESEESEN RS RS

Q 'xxx' 0@

(Dispersion parameter for

.32904 -2.089
.29058 -0.261
.23588  1.380
.14964  4.659
.16977  4.821
.23317  1.945
.11827  3.251
L0071 'xx' 0.01

3
1

0.03670 *
0.79377
0.16750
.18e-06 **x
.43e-06 ***
0.05182 .
0.00115 *x

*' 0.05 '.' 0.

poisson family taken to be 1)

Null deviance: 146.328 on 33 degrees of freedom

Residual deviance:

AIC: 154.56

Number of Fisher Scoring iterations: 5

summary (model1)$cov.unscaled

(Intercept)
(Intercept) 0.047281921
typef2 -0.031333845
typef3 -0.027072249
typef4 -0.023415086
typef5 -0.024100109
cyrf2 -0.015756834
cyrf3 -0.020308913
cyrf4 -0.020358789
oyrf2 -0.005558091
cyrf2
(Intercept) -0.0157568339
typef2 0.0022749529
typef3 0.0017647174
typef4 0.0012034818
typef5 -0.0001442043
cyrf2 0.0223925335
cyrf3 0.0160934529
cyrf4 0.0165915573
oyrf2 -0.0021248406

typef2
.0313338453
.0315381717
.0253121856
.0230576907
.0239048348
.0022749529
.0081833789
.0094600451
.0005331834 -

cyrf3
.020308913
.008183379
.002542585
.001410245 -
.001485335
.016093453
.028823065
.021702485
.005292693

[SEESENSEES RS IS IS RS
[SEESENSEESEE SIS RIS IS RS

[SEESENSENS IO RSN S IR

[SEESENSENSEE SIS ISR RN

|
[}

38.695 on 25 degrees of freedom

typef3
.0270722494 -
.0253121856
.1082700615
.0227104372
.0243415185
.0017647174
.0025425848
.0074478910 -0
.0001195467 -0

cyrf4
.020358789 -0.
.009460045 0.
.007447891
.006543921
.002903675 0.
.016591557
.021702485
.054368442
.008696655 0.

[SENS IR SIS BRI

Interpretation of Log Linear Models for Poisson Processes

* Focus on interpretation of Model 1, the main effects model.

¢ Recall the form of the model

1T

typef4
.023415086
.023057691
.022710437
.084435953
.022877314
.001203482
.001410245
.006543921
.000162536
oyrf2
0055580913
0005331834

.0001195467
.0001625360

0007514856

.0021248406
.0052926926
.0086966553

0139882936

-0.
Q.
Q.
Q.
0.

-0.

.0014853352

Q.

Q.

-0

log (1i(ti)) = log(\;) + log(t;) = ] B + log(t;).
* This is based on the Poisson distribution with the expected number of events occurring over (0, ¢] given by

E[Nl(tl)] = ,ul(tl) = )\ztz

* )\ = rate parameter (expected number of events per unit time).

* The regression parameters of this log linear model will have a log Relative Rate (RR) interpretation:

typef5
0241001095
0239048348
0243415185
0228773141
0556390922
0001442043

0029036746
0007514856

103
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A1 Number of events in group 1 per unit time
X2 Number of events in group 2 per unit time

RR =

Interpretation of Model 1: RR for A vs C

Task 1: Controlling for periods of construction and operation estimate the relative rate of accidents for
ships of type A versus type C.

type cyr oyr T; log(A;)
A —  — (1,0,0,0,0,75, 76,27, 28) Bo + Bss + Pere + Brrr + P
C —  — (1,0,1,0,0,x5, w6, 77,28) Bo+ P2 + Bsxs5 + Bere + Prar + Pars
log(Aa/Ac) = —B2
B2 exp{—P2}
MLE —0.6874 1.990

95% CI  —0.6874 £ 1.96(0.329) = (—1.332,—0.0426) (00426 ¢1:332) — (1.04,3.79).

For ships constructed in the same period and operated in the same period the rate of accidents for ships
of type A is 1.99 times higher than the rate of accidents for ships of type C. A 95% confidence interval for this

relative rate is (1.04, 3.79).

* Note that the null hypothesis of no effect is equivalent to RR = 1 or log(RR) = 0:

Hy: By = 0versus Hy: B2 # 0.

* The R output includes the p-value for this test:

By — 0
op(z > 1220 _ 2P(Z > 2.089) = 0.0367.
se(32)

* Therefore, we reject the null hypothesis that the rate of accidents is the same for ships of types A and C
(controlling for periods of construction and operation).

Interpretation of Model 1: RR for E vs B

Task 2: Controlling for periods of construction and operation estimate the relative rate of accidents for
ships of type E versus type B.

type cyr oyr x; log(A;)
E —  — (1,0,0,0,1, 25,26, 27,28) Bo+ Pa+ Bsxs + Bexe + Pfrar + Psxs
B —  — (1,1,0,0,0,25,26,27,28) PBo+ P1+ Bsxs + Bexe + PBrar + Psxs
log(Ap/\B) = Ba— B

* Note that the log relative risk is a linear combination of two regression parameters.
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* Recall that since 3 is an MLE, 8 ~ MVN(ﬂ, I*I(B))
z' B~ N(mTB,mTIﬂ(ﬂf)m)

* In order to estimate se(84 — f1):

(@i If working in R, we can define the contrast ¢ = (0, —1,0,0,1,0,0,0,0)" and

se(@ — Bl) = \/cTI—l(B)c.

x <- as.matrix(c(o, -1, @, @, 1, @, @, @, @), ncol = 1)
v <- summary(modell1)$cov.unscaled
sqrt(t(x) %*% v %*% x)

C,1]
[1,] 0.1984127

(ii) If working by hand with the R covariance or correlation matrix:

se(B1 — 1) = /Var(Bs) + Var(B1) — 2 Cov(Bu, )
= 1/(0.05564) + (0.03154) — 2(0.02390)
=0.198.

* Now to estimate the relative rate exp{(s — 81 }:

Ba— B exp{Bs — f1}

MLE —0.3256 — (—0.5433) = 0.8689 exp{0.08689} = 2.38
95% CI  0.8669 & 1.96(0.198) = (0.481,1.257)  (e0-481 ¢1-257) = (1.62,3.51)

* For ships constructed and operated in the same periods those of type E had an estimated 2.38, 95 % CI
(1.62,3.51), times higher accident rate than those of type B.

* Here the null hypothesis of no effect is that ships of types E and B have the same accident rate. That is,

Hp: Bs—B1=0vsHy: By — B1 #0.

* We test this using a Wald test. Since ' 3 ~ N(wTﬂ mTI‘l(B)w). Then

.
wiﬂA ~ N(0,1).
xTI-1(B)x
* The p-value for this test is:
o
op|z> 28 | = 21@(2 > 068169889> < 0.001.
T I-1(B)x :

* Therefore, we reject the null hypothesis that the accident rate is the same for ships of types E and B
(controlling for periods of contraction and operation).

Interpretation of Model 1: Expected Number Events
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Task 3: Estimate the expected number of accidents for a group of 10 type B ships built in 1970 and
operated during the entire period 1975-1979.

log (p:(t:)) = log(Ai) + log(t:) = @ B + log(t:).

* Estimate log()\;) the log of the event rate and its CI:

type cyr oyr x; log(\;)
B 70-74 75-79 (1,1,0,0,0,0,1,0,1) Bo+ B1+ B + Bs

x <- as.matrix(c(1, 1, @, @, 0, @, 1, @, 1), ncol = 1)
v <- summary(modell)$cov.unscaled
t(x) %*% modell1$coeff

[,1]
[1,] -5.746352

sqrt(t(x) %*% v %*% x)

,1]
[1,] ©0.1186486

t(x) %*% modell$coef + c(-1, 1) * qnorm(@.975) * sqrt(t(x) %*%
vV %*%% X)

[1] -5.978899 -5.513805

Interpretation of Model 1: Expected Number Events

¢ Determine the offset ¢{; = months:

t; = total amount of time at risk of an accident
= (# ships)(length of operation)
= (10)(5 x 12)
= 600.

* Calculate the expected number of accidents fi;:

log (/i) = log(A;) + log(t;)

fii = Aity
exp{—5.7463} x 600
=1.92.

* With 95% CI: (600e %138 600e~5-978%) = (1.52,2.42).

* The estimated number of accidents for a group of 10 type B ships built in 1970 and operated during the entire
period 1975-1979 is 1.92 with a 95 % CI of (1.52,2.42).

WEEK 9
1st to 5th November
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Topic 3c: Log Linear Models

Log Linear Models
Previously we used a Poisson GLM to model count data arising from a time homogeneous Poisson process:

* N;(t;) = the number of events observed over (0, t;]:
E[N;(t:)] = pats) = Nt
* Explanatory variables: x; = (1, z;1,...,%ip-1) .
log (pu:(t:)) = log(\i) + log(t:) = @ B + log(t:).
We will consider three other types of data we can analyse with a Poisson GLM:
1. Approximating binomial data (topic 4c).
2. Time non-homogeneous Poisson processes (topic 4d).

3. Contingency tables/Multinomial data (topic 4e).

Poisson Approximation to the Binomial
* Suppose: Y ~ BIN(m, ) so that E[Y] = m.

e Set u = mm and examine pmf of Y in terms of y:

s = (T)rva - mms
fw= N (=T R (ﬁ)y(l - Ti)my
S () (k)

* Recall: N
) a
lim (1 + ) = e,
n—oo n
* Therefore, as m — oo with p = mr fixed:

Yo
fly) — K e' the pmf of the Poisson.
y!

* Sofor Y ~ BIN(m, ), as m — oo, 1 — 0 with E[Y] = p = m fixed we have:
Y ~ POI(i = mm).
* Using a Poisson GLM (with log link):
log (1) = log() + log(m) = & B + log(m) .
——

offset
* Use the Poisson distribution to model Binomial data.
* Use with large population (m large) and low event rate ().

* Example: Today and Problem 3.1 in course notes.

Example: Poisson Approximation to the Binomial
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Non Melanoma Skin Cancer

Schwarz (2015) gives the incidence of non melanoma skin cancer among women in the early 1970s in
Minneapolis-St Paul and Dallas-Fort Worth.

City Age Count Pop. Size

msp 15-25 1 172675
msp 25-34 16 123065
msp 35-44 30 96216
msp 45-54 71 92051
msp 55-64 102 72159
msp 65-74 130 54722
msp 75-84 133 32185
msp 85+ 40 8328
dfw 15-25 4 181343
dfw 25-34 38 146207
dfw 35-44 119 121374
dfw 45-54 221 111353
dfw 55-64 259 83004
dfw  65-74 310 55932
dfw 75-84 226 29007
dfw 85+ 65 7538

Binomial and Poisson Models

¢ Binomial model:

T .
Iog<1 ) = Bo + Brwi1 + Bjzij,
o
where z;; = I{city=msp}, ;o = I{agegroup j}, j =2,3,...,8. f1 and 3, have log(OR) interpretations.

¢ Poisson model:
log (i) = o + a1 + oy + log(my).

aq and a; have log(RR) interpretations.

Binomial Model

Yy -
Iog(1 - ) = Bo + iz + Bz, §=2,3,...,8.

-

melanoma <- read.table("melanoma.txt", header = T)

melanoma$resp <- cbind(melanoma$Count, melanoma$Population -
melanoma$Count)

fit.binomial <- glm(resp ~ factor(City) + factor(Age), family = binomial,
data = melanoma)

summary (fit.binomial)

Call:
glm(formula = resp ~ factor(City) + factor(Age), family = binomial,
data = melanoma)

Deviance Residuals:
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Min
-1.49511

Coefficients:

(Intercept)
factor (City)msp
factor (Age)25-34
factor (Age)35-44
factor (Age)45-54
factor (Age)55-64
factor (Age)65-74
factor(Age)75-84
factor(Age)85+

Signif. codes:

0

1Q

-0.47903

Median

0.01814

3Q

0.37356

Estimate Std.

-10.

-0.
2.

Pxkk!

85279
80692
63034

3.84801
4.59672
5P
5
6
6

08987

.64998
.06540
.18590

0.001

SIS IR SIS BRI BN

' k!

Max

1.23840

Error z value Pr(>|z|)

.44749 -
.05228 -15.
.46747
.45467
.45104
.45031
.44976
.45035
.45782

0.01

24.

5o
8.
10.

11

12.
13.
13.

253 < 2e-16
433 < 2e-16
627 1.84e-08
463 < 2e-16
191 < 2e-16
.303 < 2e-16
562 < 2e-16
468 < 2e-16
512 < 2e-16
'x' 9.05 '.' 0.

*k*k
*k*k
*kk
*k*k
*k*k
*k*k
*k*k
*k*k
*k*k

-I [

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2794.7794 on 15 degrees of freedom

Residual deviance:

AIC: 120.29

8.0828 on

7 degrees of freedom

Number of Fisher Scoring iterations: 4

Poisson Model

fit.poisson <- glm(Count ~ factor(City) + factor(Age) + offset(log(Population)),

log(pi) = ap + arwiy + ajziy + log(m;), 7 =2,3,...,8.

family = poisson, data =
summary (fit.poisson)

Call:

glm(formula = Count ~ factor(City) + factor(Age) + offset(log(Population)),

family = poisson, data

Deviance Residuals:

Min 1Q
-1.5043 -0.4816

Coefficients:

(Intercept)

factor(City)msp
factor (Age)25-34
factor (Age)35-44
factor (Age)45-54
factor (Age)55-64
factor(Age)65-74

Median
0.0169

melanoma)

melanoma)
3Q Max
0.3697 1.2504

Estimate Std.

-10.
-0.
2.

o1 O AW

85360
80428
63019

.84735
.59519
.08728
.64541

[SEESEICRN SIS B RN

Error z value Pr(>|z|)

.44749 -24.
.05221 -15.
.46746
.45466
.45103
.45030
.44975

5o
8.
10.

11
12

255 < 2e-16
406 < 2e-16
627 1.84e-08
462 < 2e-16
188 < 2e-16
.298 < 2e-16
.552 < 2e-16

KKk
*k*k
*k*k
*k*k
*k*k
*k*k
*xk
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factor(Age)75-84  6.05855 0.45032 13.454 < 2e-16 x*xx*
factor (Age)85+ 6.17819 0.45774 13.497 < 2e-16 **%

Signif. codes: @ '**x' 0.001 '**' 0.01 'x' ©.05 '.' @.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2790.340 on 15 degrees of freedom
Residual deviance: 8.195 on 7 degrees of freedom
AIC: 120.44

Number of Fisher Scoring iterations: 4

Example: Non Melanoma Skin Cancer

1. What is the OR and RR for developing non melanoma skin cancer for women in Dallas-Forth Worth versus
those in Minneapolis-St Paul, controlling for age?

OR = exp{—f1} = exp{0.80692} = 2.2410.
RR = exp{—d&; } = exp{0.80428} = 2.2351.

2. What is the predicted number of skin cancer cases in Dallas-Fort Worth among women age 25-34?

A~

Vi = mi#t; = (146207) expit(Bo + B2) = 39.25427.
by = mTt; = (146207) exp{do + (342} = 39.22713.

* m (population size) is very large and = (probability of getting non melanoma skin cancer) is very small so
the Poisson approximation holds.

* Inference from the two models is nearly identical.

* We might prefer the RR interpretation over the OR interpretation.

¢ Now consider
E[N@®)] =p) =Xt) (ot = At).

* The rate is now a function of time.
* Lots of possible ways to model the rate A(t).

— Piecewise constant:
M) = {0 <t <t} + b I{t1 <t <to}+---

Piecewise linear:

)\(t):(m1t—|—bl)ﬂ{0<t<t1}—|—(m2t—|—b2)ﬂ{t1 St<t2}+"' .

Quadratic:
At) = at® + bt + c.

Splines, etc.

Example: Rat Tumour Data
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Rat Tumour Data

Here we consider data from a study of the development of mammary tumours in rats reported in
Gail et al. (1980).

This study was a carcinogenicity experiment in which 48 rats were exposed to a carcinogen,

— 23 were then assigned to a treatment group where the treatment was designed to reduce the
development of tumours,

— 25 were assigned to the control group.

The rats were carefully examined over 122 days for the development of new tumours (multiple
tumours could develop).

The day (time) of each tumour was recorded.

Our aim here is to estimate the expected number of tumours in the two groups and make treatment
comparisons.

We show the first 5 IDs for each group.

Times to tumours in days(number of tumours detected)

Treatment Group Control Group

ID Days of Tumour Detection ID Days of Tumour Detection

1 122 1 3,42,59,61 112,119

2 2 28,31,35,45,52,592) 77.85,107,112
3 3,88 3 31,38,48,52,74,77,101® 119

4 92 4 11,114

5 70,74,85,92 5 35,45,742 77 80, 85,902

Timeline plots for data from Gail et al. (1980)

R Code & Rat Tumour Data Structure

rats <- read.table("rats.dat", header = F)
dimnames(rats)[[2]] <- c("id", "start", "stop", "status", "enum",
”trt”)

gd.pw.f <- function(indata) {
pid <- sort(unique(indata$id))
data <- matrix(@, nrow = (length(pid) * 4), ncol = 5)
for (i in 1:length(pid)) {
tmp <- indatalindata$id == pid[i], ]
etime <- floor(tmp$stop[tmp$status == 1])
startpos <- 4 *x (i - 1) + 1
stoppos <- 4 *x i
data[startpos:stoppos, 1] <- rep(pid[i], 4)
data[startpos:stoppos, 2] <- c(1, 2, 3, 4)
data[startpos:stoppos, 3] <- c(sum((etime > @) & (etime <=
30)), sum((etime > 30) & (etime <= 60)), sum((etime >
60) & (etime <= 90)), sum((etime > 90) & (etime <=
122)))
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datal[startpos:stoppos, 4] <- c(30, 30, 30, 32)
data[startpos:stoppos, 5] <- rep(unique(tmp$trt), 4)

3

data <- data.frame(data)

dimnames(data)[[2]] <- c("id", "interval", "count", "len",

n

ret

}

trt")
urn(data)

rats.pw <- gd.pw.f(rats)

rats.pw[1:20, ]

rats.pw[1:20, ]

id interval count len

1

o N Ul wN =

- a0
- o

—_ A
O 00 NO U1l &~ WDN
OO0 01O BB DWWWWNDNDNODND = =2 =

N
[}

¢ Consider four time intervals.

* One line of data per interval.

1. Model Control Group Only (pfitC)

1

A WN=_=DBDWN-_DBWN=2DWN=DDWwWNDN

count = number events in interval.
len = days spent in interval.

trt = treatment group.

0

WO OO 2000000 "0 20000

30
30
30
32
30
30
30
32
30
30
30
32
30
30
30
32
30
30
30
32

log(pix) = Po + Srxi1 + Baxio + Psxiz +offset(log(len,y)).

trt

S U U U GO G U | §

interval

* To start, we fit a piecewise constant model for control rats:

log(p;) = :c;rﬂ + log(t;).

112
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* interval is a categorical variable at 4 levels:
z; = I{interval 2}, ;2 = I{interval 3}, x;3 = I{interval 4}.

¢ Include offset(log(len)) to account for the fact that different intervals are of different durations.

pfitC <- glm(count ~ factor(interval) + offset(log(len)), family = poisson(link = log),
data = rats.pw, subset = (trt == 0))
summary (pfitC)

Call:

glm(formula = count ~ factor(interval) + offset(log(len)), family = poisson(link = log),
data = rats.pw, subset = (trt == 0))

Deviance Residuals:
Min 1Q  Median 30 Max
-1.9183 -1.5748 -0.2736 0.6262 2.8959

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -3.0937 0.1715 -18.039 <2e-16 **x
factor(interval)2 0.1625 0.2333  0.697 0.486
factor(interval)3 0.3023 0.2262 1.337 0.181

factor(interval)4 -0.1569 0.2483 -0.632 0.527
_S_i_gnif. codes: @ 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 167.79 on 99 degrees of freedom
Residual deviance: 163.31 on 96 degrees of freedom

AIC: 345.25

Number of Fisher Scoring iterations: 5

Plot of log(A(t)) for pfitC

—2.6 |- -
Bo + 32
—2.8| — .
Bo + b1
3L . i
Bo
-3.2| Po+Bs |
—34 -
| | |

|
30 60 90 122
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Interpretation of pfitC

log(1i) = Bo + Bixin + Pazia + Baxis + log(t;)

interval

¢ Relative Rate of events in interval 2 versus interval 1:

exp{f} = ;(interval 2)

— = .16254} = 1.176.
(interval 1) exp{0.16254} 70

* Notice none of 31, 82, 33 are statistically significant.
* There is a trend of a slightly higher rate in intervals 2 and 3 (versus interval 1) but the event rate does not
differ significantly across follow-up time in the control rats.
2. Model Control and Treatment Groups (pfit)
* Now, fit a model to both the treatment and control groups.
* x;4 = [{treatment group}.
* Assume a piecewise constant baseline rate function.

* Model is now:
log(i) = Bo + Brxi1 + Poxio + Paxs +Laxia + of fset(log(t;)).

interval

exp{S1} is now RR of events for interval 2 versus interval 1, for two rats of the same treatment group.

pfit <- glm(count ~ factor(interval) + trt + offset(log(len)),
family = poisson(link = log), data = rats.pw)
summary (pfit)

Call:
glm(formula = count ~ factor(interval) + trt + offset(log(len)),
family = poisson(link = log), data = rats.pw)

Deviance Residuals:
Min 10  Median 30 Max
-1.8335 -1.1994 -0.3302 0.4701 3.0551

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -3.08818 15079 -20.480 < 2e-16 **x
factor(interval)2 ©.17185 .19590 0.877 0.380
factor(interval)3 0.20634 .19438 1.062 0.288
factor(interval)4 -0.06454 .20412 -0.316 0.752
trt -0.82302 15171 -5.425 5.79e-08 *x*x*

(SIS IR SIS
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Signif. codes: @ 'xxx' 0.001 '**' .01 'x' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 301.37 on 191 degrees of freedom
Residual deviance: 266.32 on 187 degrees of freedom
AIC: 547.75

Number of Fisher Scoring iterations: 5

Interpretation of pfit
¢ Relative Rate of events for treatment versus control rats:

(treatment)

A
= = —VU. 2 - .44.
exp{fs} Xcontrol) exp{—0.8230} =0

* Controlling for interval of follow-up, the rate of tumour development in treated rats in 0.44 times that of
control rats.

¢ That is, treatment looks beneficial.
* Notice that 3, is statistically significant.
* (31, B2, B3 are still not statistically significant.

* Consider do we really need to use a time non-homogeneous model for this data?

3. Time Homogeneous Model (fit)
log(ui) = Bo + Baxig + log(t;).
* 5y = log rate of tumour development, per day, control group.
* 3, = log Relative Rate (RR) of tumour development in treated vs control rats.
* This model is nested within the time non-homogeneous model.
* Consider pfit model with 81 = 35 = 83 = 0.

* We can carry out a likelihood ratio test

fit <- glm(count ~ trt + offset(log(len)), family = poisson(link = log),
data = rats.pw)
summary (fit)

Call:
glm(formula = count ~ trt + offset(log(len)), family = poisson(link = log),
data = rats.pw)

Deviance Residuals:
Min 1Q  Median 30 Max
-1.7800 -1.1421 -0.4235 0.4009 3.2673
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Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) -3.00562 0.08138 -36.934 < 2e-16 x**
trt -0.82302 0.15171 -5.425 5.79e-08 x**

Signif. codes: @ '**xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 301.37 on 191 degrees of freedom
Residual deviance: 269.06 on 190 degrees of freedom
AIC: 544.49

Number of Fisher Scoring iterations: 5

Interpretation of fit
* Note 3, = —0.8230 is almost unchanged versus model fit.

* Likelihood Ratio/Deviance test of Hy: 51 = 2 = 53 = 0:

AD = Dy — D4 = 269.060 — 266.323 ~ x2 under H,.

1 - pchisq(fit$deviance - pfit$deviance, fit$df.residual - pfit$df.residual)

[1] 0.4340077

* Do not reject Hy.
* Conclude that the time homogeneous model (model 3) is probably OK in this case.

* However, we retain it for generality and for the following analysis.

4. Time Non-Homogeneous Model with Treatment Interaction (ifit)
¢ Q: Is the treatment effect constant over time?

¢ Model with interaction:

interval treatment
~ =
log (i) = Bo + Przi1 + Pazio + P3xis + Baxia +
+ B5i12ia + BexioTia + Braizzia + log(ts)

interval«treatment

* Model pfit (time non-homogeneous, without interaction) is nested within this model (consider ifit with

Bs = Bs = 7 = 0).

ifit <- glm(count ~ offset(log(len)) + factor(interval) * trt,
family = poisson(link = log), data = rats.pw)
summary (ifit)
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Call:
glm(formula = count ~ offset(log(len)) + factor(interval) * trt,
family = poisson(link = log), data = rats.pw)

Deviance Residuals:
Min 10  Median 30 Max
-1.9183 -1.2158 -0.3241 0.5125 2.8959

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -3.09371 0.17150 -18.039 <2e-16 ***
factor(interval)?2 0.16252 0.23326 0.697 0.4860
factor(interval)3 0.30228 0.22617 1.337 0.1814
factor(interval)4 -0.15691 0.24833 -0.632 0.5275
trt -0.80392 0.31755 -2.532 0.0114 *
factor(interval)2:trt 0.03164 0.42972 0.074 ©0.9413
factor(interval)3:trt -0.37639 0.44663 -0.843 0.3994
factor(interval)4:trt 0.28653 0.43808 0.654 0.5131
Signif. codes: @ '**x' 0.001 '*x' 0.01 'x' .05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 301.37 on 191 degrees of freedom
Residual deviance: 263.92 on 184 degrees of freedom
AIC: 551.35

Number of Fisher Scoring iterations: 5

Interpretation of ifit
* Note 34 = —0.8038 is very similar to pfit.
* Likelihood Ratio/Deviance test of Hy: 35 = 55 = 87 = 0:
AD =Dy — Dy = 266.323 — 263.917 ~ X% under Hy.

1 - pchisq(pfit$deviance - ifit$deviance, pfit$df.residual -
ifit$df.residual)

[1] 0.4926145

* Do not reject Hy.

¢ We do not have evidence that the treatment effect varies across the time intervals.

Summary of Rat Tumour Data Analysis
* Looks like a piecewise constant rate function is not necessary.

e The best model (of the ones we examined) is fit:

log(1ti) = Bo + Bawia + log(ts).
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* Interpretation: The relative rate for tumour development in treated versus control rats is:

exp{fs} = exp{—0.822995} = 0.439.

* That is, treatment is beneficial (treated rates get fewer tumours).

* Prediction: Expected number of tumours for a treated rat observed for 70 days?
log(2) = fBo + B4 + log(70) = —3.00562 — 0.82302 + log(70) = 0.41986.

[ = exp{0.41986} = 1.5217.

Topic 3d: Introduction of Contingency Tables

Analysis of Contingency Tables
* Contingency tables can be formed to display data when all variables are categorical.

* Below is a two-dimensional I x J contingency table.

Factor W
1 2 3 e G e T
1 yir yi2 vz -+ Y13 0 Y17 | Yle
2| y21 Y22 Y23 - Yo5 - Y27 | Y2e
3| Ys1t Ys2 Y3z o Y3j ot Y3J | Y3e
Factor V : : : .o .o :
Ul Yl Y2 Y3 Wi o Yid | Yie
Iy Y2 vz - Y1 - Y1J | Yle
Yo1 Yo2 Ye3 * Yej °* YeJ | Yoo

e ] = Number of rows; J = Number of columns.

J
* Row Totals: yje = > %, ¥ij-
* Column Totals: yo; = S21_, ¥ij-

I J

* Grand Total: yee = > ;1 D 5 Yij-
* Want to assess the nature/significance of ANY associations between the variables.
* No special response variable — all factors are of equal importance.
* Contingency tables are a cross-classification of units with respect to the factors of interest.

* The observations y;; consist of all the cell counts of the contingency table — these will be our “responses.”

Example: 2-way Contingency Table
Breast Self-Examination Contingency Table

* Senie et al. (1981) investigated the relationship between age and frequency of breast self-
examination in a sample of women.

* Two factors: Age (at 3 levels) and Frequency (at 3 levels).
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Frequency of breast self-examination

Monthly Occasionally Never | Total
<45 91 90 51 232
Age 45-59 150 200 155 505
>60 109 198 172 479

Total 350 488 378 1216

* Is than an association between age and exam frequency?

Basic Assumption in Contingency Tables

* Basic Assumption: Each cell count has an independent Poisson distribution with mean f;; for the (g, j) cell

Yij ”
‘u” e Hij

P(Yij = v
( J y]) ym'

i =0,1,2,. ...

* The joint distribution is

Yij

P(Kj:yij’izl""a-[aj:l,. HH(M”e luj)

1=17=1

* We will condition on the relevant fixed totals (row, column, or grand) (possibly fixed by design) to get a
multinomial or product multinomial distribution.

* Will show that these can all by analysed using Poisson GLMs.

The Multinomial Distribution
* Assume the total number of units is fixed Yoo = yee (= 1).
* Units are then cross-classified by 2 factors V and W.

* Our assumption of Y;; ~ POI(y,;) independently implies
Yee ~ POI(l1es), Where [iqe = Z Z“ij‘

* To get the joint distribution of the Y;;’s, we must condition on the grand total Y,e = y.. since this is a fixed
design:

P(Y — y”VZ ]7 o0 — y--)
P(Yoo — y..)

I 7 nl exp{—pi;}
o o (™=

1183 exp{—flee}/Yos!

() () (st net™)

= 1 since [Lee = Z Z Heig

Lo Ol
R e,

P(Y = yljvz J | Yoo = Yoo) =

since p¥e® = pé
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¢ Recall the standard Multinomial distribution:

f(xl,“';xk;nawla"'v’frk):P(Xl :xla"'vXk:xk):i.,/Tl

where > m; =1 and > z; = n.
* The pmf on the previous slide is a multinomial distribution with

Tij = fbij/1tee = P(level i of factor V and level j of factor ).

* Notethat > > m; =1

I J
.. Yeoo! .
PO T e =) = (HHW!) L=

i=1j=1

Multinomial Likelihood
Yoo roJ
P(Yij = yij Vi, 7 | Yoo = You) = (HHW) 11~

e m=(m1,...,7r7) be the parameter vector.

* The likelihood and log-likelihood are given by:

L(m) = HHT{'%J, where szj =1

Testing for Independence in a 2-way Table

Tk

120

* Thinking back to the contingency table, we might be interested in testing the hypothesis that the two

methods of classification are independent:
Hol Tij = TieT ej V’L,]
Hp: m;j # TieTe; for some i, j,
where Tie = Zj:l Tij and Tej = Zle Tij-

¢ Consider the log-likelihood under Hy (independence):

() = Zzy” log(TriaTe;)
= v (log(mia) + log(me;)
= Z Yie log(Tie) + Zy.j log(7re;)-

* The parameters are constrained by ) " m,e =1 and ) m,; = 1.

* The MLEs of 7;, and 7, ; under Hy are:
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* And the log-likelihood evaluated at the MLE is:

=503 stog( et ).
i ] y..

* Next consider working under H, (unconstrained).

Yij
Yoo

* The unconstrained MLEs are: 7;; =

* And the log-likelihood evaluated at the unconstrained MLE is:

7) :;Zyz’j '0g(§i)-

* To test for independence we could use a Likelihood Ratio/Deviance test for the multinomial:

D =2(4(7) — U(7))
_QZZyu 'Og( /yy%)

= 22 Zyw '°g<yl.y.7/y-->
_ 2;;01‘1‘ 'Og(EZ>'

¢ Note this has the usual form of a Deviance Statistic with

Oij = Yij and Ezj = yo.ﬁ-ij under Ho.

* We know D ~ x2 but what are the degrees of freedom here?

_p)z

n — p = (# parameters saturated) — (# parameters unsaturated)

=IJ-1)—-(I-1)+(J-1))
—IJ—T—J+1

= (-1 - 1)

Example: Breast Self-Examination Data (fi;; vs [i;;)

* Observed Data: y;; = flij = TijYee:

Frequency of breast self-examination

Monthly Occasionally Never | Total

<45 91 90 51 232

Age 45-59 150 200 155 505
>60 109 198 172 479

Total 350 488 378 | 1216

* Expected Data under Ho: fi;j = 7ijYee

= yioyoj/yoo:

121
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Frequency of breast self-examination

Monthly Occasionally Never | Total

<45 66.78 93.11 72.12 | 232

Age 45-59 | 145.35 202.66 156.98 | 505
>60 137.87 192.23 148.90 | 479

Total 350 488 378 1216

Example: Breast Self-Examination Data: (7;; Vs ;;)

* Unconstrained MLEs: 7;; = y;;/Yes (as percentages):

Frequency of breast self-examination

Monthly Occasionally Never | Row %
<45 7.48 7.40 4.19 19.07
Age 45-59 12.34 16.45 12.75 | 41.54
>60 8.96 16.28 14.14 | 39.38
Column % 28.78 40.13 31.08 100

* Constrained MLEs under Hy: #1;; = fliefej = YieYej/Yze:

Frequency of breast self-examination

Monthly Occasionally Never | Row %
<45 5.49 7.66 5.93 19.08
Age 45-59 11.95 16.67 12.91 | 41.53
>60 11.34 15.81 12.25 | 39.40
Column % 28.78 40.14 31.09 100

Example: Breast Self-Examination Data (Testing Independence)

¢ Use the Likelihood Ratio/Deviance test derived for the Multinomial Distribution

D=2y, |og(y“> = 25.19226.
T

yioyoj/yoo
* Compare to a 7 distribution:

p="P(x3 > 25.19226) < 0.001.

* So we reject the null hypothesis that age and frequency of breast self-examination are independent.

The Product Multinomial Distribution
* Previously, we assumed the grand total Y, = yee Was fixed.
* Now assume that the row totals Y;, = ;. are fixed.

— Choose a sample of fixed size from populations 7 = 1, ..., I and then classify the units with response
to Factor W.

* Our assumption of Y;; ~ POI(y,;) independently implies

Y;. ~ POI(,U,,.)7 where Hie = Z,u,z]
J
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* To get the joint distribution of the Y;;’s we now condition on the row totals Ve = yie, i = 1,..., 1

]P)(}/’J - yijViaj7 Yie = y“\V/Z)

P(Yij = yi¥i,j | Yie = yia¥i) = P(Yie = yiaVi)

Example: Another Breast Self-Examination Study
* Imagine this time the investigators decided study a fixed number of women of each age group.
e The (hypothetical) 2-way contingency table is now:

Breast Self-Examination Contingency Table (Hypothetical)

Frequency of breast self-examination

Monthly Occasionally Never | Total

<45 78 78 44 200

Age 45-59 178 238 184 600
>60 91 165 144 400

Total 347 481 372 | 1200

* We need to take this method of sampling into account in the analysis.

P(Yi; = yij¥i, | Yie = yia¥i) = (H H(uff exp{— mﬁ))/(l—[ e exp{ m,})

() ) ({{Ezzﬁ)

= 1since p;; = Z% Lie = [Lee

(s I (%) ")

Multinomial pmf for row ¢

* This is the product multinomial distribution with 7;; = 115/ ft;e-
* Here, 7;; = probability of being level j given population level i.

* Note that ), m;; = 1 for all 4.

Product Multinomial Likelihood

I
P4 . yzo ij
PO = v 1Y = o) = [T (o [T )
i

=1

* Again, let w = (711,...,777) | be the parameter vector.
* Note the 7;; have different interpretations here versus the multinomial case.

* The log-likelihood is given by:

= Zzyij log(m;;), where Zm-j =1Vi.
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Testing for Independence with the Product Multinomial

* In this case we might be interested in testing where the probability of being at factor level j is the same
across all stratum/populations i = 1,...,1

Hy: T = Toj = -+ = Tj = Ty, ] = 1’27...,J,
Hy: at least one 7;; # my/;.

* The log likelihood under Hy (independence) is

Z Zyw log () Zy.] log ().

* The parameters are constrained by > ;M =1

¢ The MLEs under Hy are

e Under Hy (unconstrained) the MLEs are

Tij =
¢ The Likelihood Ratio/Deviance test statistic is:
D =2(l(x) — U(%))
Yi Ye
B QZZ‘% |Og<yj/y ])

-9 Z Z Yij log (yz.y-]/y..)

* Which is identical to the Deviance statistic for testing independence under a multinomial distribution.
* Here, D ~ X%I—l)(J—l) since

n—p=IJ-1)—(J-1)=IJ-T—J+1=I-1)(J—-1).

Example: Another Breast Self-Examination Study

* Observed Data: y;;:

Frequency of breast self-examination

Monthly Occasionally Never | Total

<45 78 78 44 200

Age 45-59 178 238 184 600
>60 91 165 144 400

Total 347 481 372 1200

* Expected Data under Ho: flij = YieTj = YieYej/Yoe

Frequency of breast self-examination
Monthly Occasionally Never | Total

<45 07.83 80.17 62.00 200
Age 45-59 | 173.50 240.50 186.00 | 600
>60 115.67 160.33 124.00 | 400

Total 347 481 372 1200
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* Unconstrained MLEs: 7;; = y;;/v:e (as percentages):

Frequency of breast self-examination
Monthly Occasionally Never | Total

<45 39.00 39.00 22.00 | 100
Age 45-59 29.67 39.67 30.67 | 100
>60 22.75 41.25 36.00 | 100

* Constrained MLES: 7;; = ; = Ve /Yee (as percentages):

Frequency of breast self-examination
Monthly Occasionally Never | Total

<45 28.92 40.08 31.00 | 100
Age 45-59 28.92 40.08 31.00 | 100
>60 28.92 40.08 31.00 | 100

Example: Another Breast Self-Examination Study (Testing Independence)

e Use the Likelihood Ratio/Deviance test derived for the Multinomial Distribution

D=23"Y"y; |og(y”> = 21.25615.
i

yioyoj/yoo

 Compare to a x? distribution:
p="P(x3 > 21.25615) < 0.001.

* So we reject the null hypothesis that age and frequency of breast self-examination are independent.

Summary

* Today we considered simple 2-way contingency tables.

With the basic Poisson assumption for the cell counts, depending on the type of sampling used, we can test
for independence using:

1. Multinomial distribution (condition on ).

2. Product multinomial (condition on y;,, ¢ = 1,2,...,I).

Both yield the same Likelihood Ratio/Deviance test statistic.
* Interestingly we can also use log-linear models to assess these independence hypotheses (next week).
* Easily generalizable to 3-way (and more) contingency tables.

WEEK 10
8th to 12th November
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Topic 3e: Log Linear Models for Two-way Tables

Likelihood Based Analysis of 2-way Contingency Tables

Factor W
1 92 3 G T
1| yir yi2 iz - Yij 0 Y1J | Yle
2| y21 Yoo Y23 v Y25 Y27 | Y2e
3| ys1 Y32 Y33 0 Y3j o Y37 | Y3e
Factor V' : : : : : :
Ul Y Y2 Yz o Y o Yid | Yie
I'lynn w2 yrs - Yrj - Yrj | Yle
Yol Ye2 Y3 *° Yej = YeJ | Yoo

* Previously: Previously: Derived Likelihood Ratio/Deviance tests for testing for independence between
Factor V' and Factor W.

* Basic Assumption: Y;; ~ POI(u;;), Vi, j.
* When we condition on the Grand Total the joint distribution becomes Multinomial, and we want to test:
Ho: mij = TieTej Vi,
Hyp: m;; # mieme; for some i, j.

* When we condition on the Row Totals the joint distribution becomes Product Multinomial, and we want to
test:
Ho: Ty = T2j = " =TJ5 = Ty, j:1,2,...,J,

Hy: at least one m;; # my/j.

* In either case, the Likelihood Ratio/Deviance Test statistic is:

Yij
v J

Log Linear Models for 2-way Contingency Tables
* Basic Assumption: Y;; ~ POI(y;), Vi, j.
* Explanatory Variables: Factor V and W:

x1 = I{Factor V at level 2}, xy = I{Factor W at level 2},
a9 = I{Factor V at level 3}, 2741 = I{Factor W at level 3},

xy—1 = I{Factor V atlevel I}, x4 _» = [{Factor W at level J}.

* The main effects log-linear model would be:

Factor V'
log(pe) = Bo + Brxie + Poae + -+ Bro1xr—10+
+ Brere + Bre1%r4ie + -+ Bryg—oTrvg—oe t=1,...,1J.

Factor W
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* Note: # parameters =1+ (I — 1)+ (J —1) =1+ J — L.
* The 2" 3 is quite cumbersome when I and J are large.
* Consider the following expression for the model:
log(1si5) :u+uy+ugv, i=1,....1,5=1,...,J,
where u} +u}V = 0.

* Note: # parameters =1+ (I - 1)+ (J—-1)=T+J — 1.
* This notation suppresses the binary x variables.
* The relationship between the 5 and u is as follows:

uy =g,  uy =B,

uf =B, uy =PBry,

u = P,

uj =PBr-1, uy =PBris_a.

* Testing independence in a 2-way table:
Ho: mij = TieTej Vi,
Hyp: m;; # mieme; for some i, j.
* The corresponding log-linear models are:
Hy: log(pij) = u+uy + u;/V
Hy: log(pij) = u+ uY + u;/V + uxw
* Using corner-point constraints we require:
UY =0, ull/V =0, u}/jw =0Vy, uz‘»/lw Vi.

* The interaction model has 1 + (I — 1) + (J — 1) 4+ ({ — 1)(J — 1) = IJ parameters.
* Wait: We're using a Poisson model to fit data/test hypotheses from a Multinomial distribution?

* Examine the log-likelihood from the Poisson:

L) = Z Z[yu log(pij) — wij — log(yi;!)].

* Substitute in the log linear model Hy: log(p;j) = u+u) + u}”:

lu) = ZZ(y”(u +u)l + u}/V) —exp{u +u) + u}/v} — log(yi;!))
ol

S = DO (wij —explu+uf +u)'})
DD )
= Yoo — [loe (set =0) = f[lee = Yos-
a7 = S (yirj — explu+uf +ulV})
= Yire — [ire (set=0) = [lje = Yie Vi.

gt = 2 2 (v —exp{utu +ul})

= Yojr — Hojr  (set=0) => flo; = Ya; Vj.

127
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* So the main effects log linear model reproduces the row, column and grand totals.

¢ If we do the same with the saturated model

A log(piy) = u+u) + u + uVW
we find it provides a perfect fit to the data: fi;; = y;; for all 4, j.

¢ Recall the Deviance Test for the Poisson Distribution

D =2(l(a) - L(f))
=2)" Z( yij — log(fuiz) — iy — log(yi")) — (yij — log(ftij) — fuij — log(yij!)))

=
=2> "> "y |°g<yz.y-g/y..>

since
ﬂz] = yo-ﬁ_io’ﬁ—oj
_ (ﬂzo ) (ﬂoj )
= Yoo ~ ~
Hee Hee
= yioyoj/you
and

ZZ[LU = ZZ“’U = Yoo,
ZZ/%‘;‘ = [lee = Yoe-

—9 Z Zy” |°g< Z_y,j/y..>

* We know D ~ x2_, under Hy. Here,
n—-p=I-J)-(1+I-1)+(J—1))=I—1)(J—1).
¢ Same as the Likelihood Ratio/Deviance Test statistic from the Multinomial and Product Multinomial last
section.

* Use the Deviance Test from fitting Poisson models to conduct hypotheses tests for data from 2-way
contingency tables!

Example: A Melanoma Study

* A cross-sectional study was conducted in which 400 patients with malignant melanoma were classified
according to two factors: the site of the tumour and the histological type.
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Melanoma Study Data

Tumour Type Head and Neck Trunk Extremities Total
Hutchinson’s freckle 22 2 10 34
Superficial Spreading 16 54 115 185
Nodular 19 33 73 125
Indeterminate 11 17 28 56
Total 68 106 226 400

Here we wish to investigate whether the different types of tumour appear equally likely in the different
sites.

That is, we are assessing whether there is an association between histological type and tumour site.

We wish to test for independence:
Hoi Tij = TieTlej V’L,]

Hyp: mi; # mieTe; for some i, j.

Under Ho: pt;; = E[Y;;] = YeeTieTs;, meaning we will have to fit the row and column totals to allow
estimation of 7;, and 7.

Thus, our log linear model under the null hypothesis is

log (i) = u+u] +uj’,

i=1,2,3,4,j=1,2,3
V corresponds to tumour type variable (i indicating the level).
W corresponds to tumour site variable (j indicating the level).

If the model fits the data well, then there’s no evidence against the assumption that tumour type and site
are independent.

If the model does not fit the data well, then some tumour types appear more frequently in certain locations.

R Dataset

Melanoma Data Set

co NoOo Ol b~ wN—

- o a4
N — O

type locat vy
1 22

2
10
16
54
115
19
33
73
11
17
28

A B, B wWwwWPNPDDDODDND = =
WN = W= W= wN =
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R Code

derm.dat <- read.table("derm.dat", header = T)

derm.dat$typef <- factor(derm.dat$type)

derm.dat$sitef <- factor(derm.dat$locat)

derm.dat

# fitting the model with both main effects

modell <- glm(y ~ typef + sitef, family = poisson, data = derm.dat)
summary (model1l)

# creating deviance residuals for diagnostic plots

derm.dat$fitted.values <- modell$fitted.values

derm.dat$rdeviance <- residuals.glm(modell, type = "deviance")
derm.dat

# fitting the model with only the 'histological type' main

# effect

model2 <- glm(y ~ typef, family = poisson, data = derm.dat)

1 - pchisq(model2$deviance - modeli$deviance, model2$df.residual -
model1$df.residual)

# fitting the model with only the 'site' main effect

model3 <- glm(y ~ sitef, family = poisson, data = derm.dat)

1 - pchisq(model3$deviance - modeli$deviance, model3$df.residual -
model1$df.residual)

One line per cell in the contingency table.

IJ = 12 observations.
* type is tumour type (4 levels).
¢ locat is tumour location (3 levels).

* y is the count in the contingency table.

R output for Model 1: type + site

modell <- glm(y ~ typef + sitef, family = poisson, data = derm.dat)
summary (model1)

Call:
glm(formula = y ~ typef + sitef, family

poisson, data = derm.dat)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.0453 -1.0741 0.1297 0.5857 5.1354

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.7544 0.2040 8.600 < 2e-16 **%

typef2 1.6940 0.1866 9.079 < 2e-16 **x%
typef3 1.3020 0.1934  6.731 1.68e-11 #**x%
typef4 0.4990 0.2174  2.295 0.02173 *

sitef2 0.4439 0.1554  2.857 0.00427 *%
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sitef3 1.2010 0.1383 8.683 < 2e-16 *xx
_S_i_gnif. codes: @ 'xxx' 0.001 'xx' 0.01 'x' .05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 295.203 on 11 degrees of freedom
Residual deviance: 51.795 on 6 degrees of freedom

AIC: 122.91

Number of Fisher Scoring iterations: 5

* Recall we are testing for independence
Ho: mij = TieTej Vi,
Hy: i # TieTej for some 4, j.
* The Deviance test statistic x3,_s under H.

* Here D = 51.795 which corresponds to a p-value of
p="P(xg > 51.795) < 0.001.

Therefore, we reject the null hypothesis of independence.

1 - pchisq(modell$deviance, model1$df.residual)

[1] 2.050453e-09

e Examine the fitted values and residuals.

derm.dat

type locat vy typef sitef fitted.values rdeviance

1 1 1 22 1 1 5.780 5.13537787
2 1 2 2 1 2 9.010 -2.82829426
3 1 3 10 1 3 19.210 -2.31583297
4 2 1 16 2 1 31.450 -3.04533605
5 2 2 54 2 2 49.025 0.69899703
6 2 3 115 2 3 104.525 1.00813975
7 3 1 19 3 1 21.250 -0.49711084
8 3 2 33 3 2 33.125 -0.02173229
9 3 3 73 3 3 70.625 0.28104581
10 4 1T 1 4 1 9.520 ©0.46798432
11 4 2 17 4 2 14.840 0.54787007
12 4 3 28 4 3 31.640 -0.66016102

* Can verify that the row and column totals are fit exactly.

* For example, sum the first three observations corresponding to the total number of Hutchinson freckle
cases, and sum the corresponding fitted values.
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* We conclude that the model does not provide a very good fit to the data since there are some rather large
deviance residuals corresponding to the first two rows of the table.

* Therefore, our hypothesis that tumour type and site are independent does not seem plausible.

* Specifically, based on the fitted values and residuals we see that Hutchinson’s freckle occurs more often on
the head and neck than we would expect under the independence assumption, and less often on the trunk
and extremities.

* Furthermore, superficial spreading melanoma occurs less often on the head and neck than we would
expect.

e Can we use a smaller model?

R output for Model 2: type

model2 <- glm(y ~ typef, family = poisson, data = derm.dat)
summary (model2)

Call:
glm(formula = y ~ typef, family = poisson, data = derm.dat)

Deviance Residuals:
Min 10 Median 30 Max
-6.9398 -2.2986 -0.7009 2.2079 6.0553

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.4277 0.1715 14.156 < 2e-16 **x
typef2 1.6940 0.1866 9.079 < 2e-16 **%
typef3 1.3020 0.1934 6.731 1.68e-11 *xx
typef4 0.4990 0.2174 2.295 0.0217 *
Signif. codes: @ '**x' 0.001 '**' 0.01 'x' ©.05 '.' @.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 295.2 on 11 degrees of freedom
Residual deviance: 150.1 on 8 degrees of freedom
AIC: 217.21

Number of Fisher Scoring iterations: 5

Model 2: log(ui;) = u+u) fori=1,2,3,4and j = 1,2,3 with u}’ = 0.

* Now we are testing
Ho: Tij = Fi./JV’i,
Hy: Ji such that m;; # mie/J

The Deviance test statistic AD = Dy — D4 ~ x%_, under Hp.

Here AD = 150.1 — 51.795 which corresponds to a p-value of
p =P(x3 > 98.305) < 0.001

Therefore, we reject the null hypothesis that all location occur with equal frequency.
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1 - pchisq(model2$deviance - modelil$deviance, model2$df.residual -

model1$df.residual)

(110

R output for Model 3: site

model3 <- glm(y ~ sitef, family = poisson, data =

summary (model3)

Call:

glm(formula = y ~ sitef, family = poisson, data =

Deviance Residuals:
Min 10 Median 30

Max

-7.6398 -2.5337 ©.1155 1.4367 6.8161

Coefficients:

Estimate Std. Error z value
(Intercept) 2.8332 0.1213 23.363
sitef2 0.4439 0.1554  2.857
sitef3 1.2010 0.1383 8.683

Signif. codes: @ 'xxx' 0.001 'xx' 0.01

Pr(>1zl)

derm.dat)

derm.dat)

< 2e-16 **x%x
0.00427 **
< 2e-16 x**%

'*' 0.05 '.

' 0.

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 295.2 on 11 degrees of freedom
Residual deviance: 196.9 on 9 degrees of freedom

AIC: 262.01

Number of Fisher Scoring iterations: 5

1 - pchisq(model3$deviance - modeli$deviance, model3$df.residual -

model1$df.residual)

(110

1

[

[

1
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* Therefore, we reject the null hypothesis that different tumour types occur equally often when controlled

for sites.

Summary: A Melanoma Study

* Row Percentages:

Tumour Type Head and Neck Trunk Extremities Total
Hutchinson’s freckle 64.7 5.9 29.4 100
Superficial Spreading 8.6 29.2 62.2 100
Nodular 15.2 26.4 58.4 100
Indeterminate 19.6 30.4 50.0 100
Total 17.0 26.5 56.5 100
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¢ Column Percentages:

Tumour Type Head and Neck Trunk Extremities Total
Hutchinson’s freckle 324 1.9 4.4 8.5
Superficial Spreading 23.5 50.9 50.9 46.25
Nodular 27.9 31.1 32.3 31.25
Indeterminate 16.2 16.0 12.4 14.00
Total 100 100 100 100

134

* We rejected the null hypothesis that tumour type and site are independent.

* In addition, further investigation indicates that the different tumour types do not occur equally often, and
melanoma does not occur equally often at the different sites of the body.

* See Course Notes for example of fitting model 1 with ANOVA constraints (3, u;’ = 0 and -, u}" = 0)
instead of corner-point constraints (u} = u}’ = 0).

* Coefficient estimates and correlation matrix change.

* Deviance, deviance residuals, and fitted values are unchanged.

Revisit the example from last section
Breast Self-Examination Contingency Table

Frequency of breast self-examination

Monthly Occasionally Never | Total

<45 91 90 51 232

Age 45-59 150 200 155 505
>60 109 198 172 479

Total 350 488 378 | 1216

* Last class we rejected the null hypothesis that Age and Frequency of breast self-examination are independ-

ent:
Yij
D=2 Yii Iog() = 25.19226.
;; / yi.y.j/yoo
p=P(x3 > 25.19226) < 0.001.
R Code

y <- ¢(91, 90, 51, 150, 200, 155, 109, 198, 172)
Age <- as.factor(c(1, 1, 1, 2, 2, 2, 3, 3, 3))

Freq <- as.factor(c(1, 2, 3, 1, 2, 3, 1, 2, 3))
Exam <- data.frame(Age, Freq, y)

modell <- glm(y ~ Age + Freq, family = poisson)
summary (model1)
1 - pchisq(modell$deviance, modell$df.residual)
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Exam$fv <- modell$fitted.
Exam$rd <- residuals.glm(
Exam

values
modell, type = "deviance")

R Output for Main Effects Model

# Fit main effects log linear model

modell <- glm(y ~ Age + F
summary (model1)

Call:
glm(formula =y ~ Age + F

Deviance Residuals:

1 2 3
2.8078 -0.3236 -2.6259
9
1.8471
Coefficients:

Estimate Std.

(Intercept) 4.20135 0
Age?2 0.77782 0
Age3 0.72496 0
Freq2 0.33238 0
Freqg3 0.07696 0

Signif. codes: @ '**x' Q.

(Dispersion parameter for

Null deviance: 173.94
Residual deviance: 25.19
AIC: 95.168

Number of Fisher Scoring

1 - pchisq(modell$devianc

[1] 4.602407e-05

req, family = poisson)

req, family = poisson)

4 5 6
0.3834 -0.1876 -0.1585

Error z value Pr(>|z]|)

.07966 52.743 < 2e-16 **xx%
.07931 9.807 < 2e-16 #**x%
.07999  9.063 < 2e-16 **xx%
.07005 4.745 2.08e-06 **xx%
.07418  1.037 0.3

001 'xx' @.01 'x' @.05 '.'
poisson family taken to be
4 on 8 degrees of freedom

2 on 4 degrees of freedom

iterations: 4

e, model1$df.residual)

Exam$fv <- modeli$fitted.values
Exam$rd <- residuals.glm(modell, type = "deviance")
Exam
Age Freq vy fv rd
1 1 1 91 66.77632 2.8077823
2 1 2 90 93.10526 -0.3236329
3 1 3 51 72.11842 -2.6259260
4 2 1 150 145.35362 ©.3833650
5 2 2 200 202.66447 -0.1875765
6 2 3 155 156.98191 -0.1585172

7
-2.5530

0.1 "'

D)

0.4141

135
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7 3 1 109 137.87007 -2.5530416
8 3 2 198 192.23026 ©0.4140893
9 3 3 172 148.89967 1.8470579

* Reject Hy that main effects model is adequate, that is, we reject Hy that age and frequency are independent.
» Same Deviance Test statistic as what we calculated based on the multinomial distribution.

* Compare the above fitted values to the expected data under Hy (last lecture).

Topic 3f: A Generalization to Three-way Tables

Log Linear Models for 2-Way Tables
* Subjects are classified with respect to tow factor variables denoted V and W with I and .J levels respectively.

* We are interested in testing for independence
Hp: Tjj = TieTej-
* The corresponding log linear model is:
log (i) = u +u) + u
with u} = u}V = 0 (corner-point constraints).

* Number of model parameters =1+ ([ — 1)+ (J—-1)=I+J — 1.

* Deviance test statistic:

_zzzym Iog(

2
~ X{1_1y(7_1 under Hy.
yllyo]/y..) (I 1)(J 1) 0

Residualdf =I1J -1 —-J—-1=(I—-1)(J —1).

3-way Contingency Tables

* Consider the general problem in which subjects are classified with respect to three factor variables denoted
V,W,and Z with I, J, and K levels respectively.

* As with two-way tables, we initially assume
Yijk ~ POI(pijk),
i=1,2,...,0,j=12,...,J,k=12,... K.

* As before, if Yoee = Yoo is fixed by design (as it usually would be), we condition on this to give the
multinomial distribution:

L. yooo ij
P(Yijk = 4ij6V(4, 5, k) | Yoos = Yaes) = T 10, 10, vor! HHHW?M'

* Tijk = Mijk/lees = P(V =i, W = j, Z = k) are the parameters of interest (3> > m;; = 1).

* In the case of 2-way contingency tables we discussed the connection between log-linear models and
questions about the association between the two factors.
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¢ Main effects accommodated non-uniform distributions of the row and column totals, and the interaction
terms allowed for association between the two factors of interest.

* In terms of an association, it was either present or absent.

* As we will see in what follows, with 3-way tables (contingency tables involving 3 factor variables) the
nature of the associations present may be somewhat more complicated.
1. Mutual Independence.
2. Joint Independence.
3. Conditional Independence.

4. Homogeneous Association.
* The saturated model for a 3-way contingency table is:
log(pijk) = u + u:/ + u]W + uf + uxw + uxcz + u%z + ukaZ

with corner-point constraints:

-uf =ul =uf =0.
vw _ VW _ VZ _ . VZ _ ,WZ | ,WZ _ -
- ug =uyh =’ =uh” = +u;i? =0foralli, k.
VWzZ _  VWZ _ ,VWZ C
- uyyy  =ujy 7 =uy 2 foralli, g k.

* Shorthand notation: This model is denoted (VW Z) where we list the highest order terms involving each
of the factors.

* It provides a perfect fit to the data
Tijk = Yijk/Yooes
fijk = YoooTijk = Yijk-

* To investigate the relationship between factors V, W, and Z we will consider simpler log-linear models.

1. Mutual Independence Hy: 7;j;, = TieeTeje Mook

* Hy: All 3 factors V, W, and Z are independent of each other.

* The corresponding log-linear model is (V, W, Z)
log(10)ij = u +u +u +uf
with u} = u}V = u#Z = 0 (with corner-point constraints).
* This model will fit the marginal totals exactly.

¢ The fitted values are:

~ A A A Yiek Yeoje
Hijk = YoooTijk = YooeTiekToje — Yoo Y T

* Number of model parameters =1+ (I — 1)+ (J— 1)+ (K — 1)+ (I — 1)(K —1).
* Residual df = IJK — (IK +J —1).

* Similar to ordinary 2-way independence between W and a new variable with /K levels of V and Z
combined.

* The joint distribution of (V, Z) is the same at any level of W.

* For 3-way tables there are 3 possible joint independence hypotheses and models: (V,WZ), (VZ, W), and
VW, 2).
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2. Joint Independence Hy: 7;ji = TiekTeje

* Hy: Factor W is jointly independent of V and Z

* The nature of the association between V and Z does not depend on the level of W.
* The corresponding log-linear model is (V Z, W)
log(pijk) = u+w) + i’ +uf +up”
with u{" =}V = u?, u}}? =u}i? =0 for all i, k.
 This model will fit the marginal totals and V' Z combination totals (y;ex) exactly.

¢ The fitted values are:

~ A A A Yiek Yeoje
Hijk = YoooTijk = YsoeTiokTojeo — Yooe Y T .

* Number of model parameters =1+ (I — 1)+ (J — 1)+ (K — 1)+ (I — 1)(K — 1).
* Residual df =IJK — (IK +J —1).

* Similar to ordinary 2-way independence between W and a new variable with /K levels of V' and Z
combined.

* The joint distribution of (V, Z) is the same at any level of W.
* For 3-way tables there are 3 possible joint independence hypotheses and models: (V,W Z2), (VZ, W), and
(VW, Z).
3. Conditional Independence Hy: 7;;|; = Tie|kTej|k
* Conditional probability notation: ;| = Tijk/Teek
Tijk = TijlkTeek;
P(V=iW=4,Z=k)=P(V=iW=j|Z=kP(Z=k).

* Hj: Factors V and W are conditionally independent given Z.

 That is, the association between V' and W can be fully explained by Z.

* The corresponding log-linear model is (V Z, W Z)
log(1)ije = u) +u) +uf +uf +ul? +uli?.

* This model will fit all marginal totals and VW Z and W Z combination totals (y;e; and ye;; exactly).

* The fitted values are: L
A N TiekTejk YiekYejk
Hijk = YoooTijk = Yooe — % = .
Teek Yook
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* Number of model parameters =1+ (I - 1)+ (J -1+ (K -1)+ (I - 1)(K - 1)+ (J - 1)(K - 1).

Residual df = IJK — (IK + JK — K).
 Similar to ordinary 2-way independence between V' and W at each level of Z.
 That is, make K 2-way tables (I x J) and test independence of each table.

* For 3-way tables there are 3 possible conditional independence hypotheses and models: (VZ, W Z2),
(VW,VZ),and (VW,WZ).

4. Homogeneous Association

* The remaining log-linear model is (VW,VZ, W Z)
log(pijk) = u + uy + ugv + uf + uxw + uxcz + u%z
* Let’s examine the model at k* an arbitrary fixed level of factor Z:

log(p)ijis = u+u} + u}/v +uf. + u};W +ubZ + u%*z
Z v vz w wz VW
= (U + 'U;k*) + (Ui + uik*) + (uj + U’jk* ) + U/”

=u urV + uj*-W + uzgw

— This is a saturated model for the 2-way table of V and W at Z = k*.

— V and W are not independent at level Z = k*.

Vw

- However, at a different level Z = kf, the parameter ug;

and W does not change.

representing the association between V'

* Homogeneous Association: There is a relationship between all pairs of factors, but the nature of the
association is the same (i.e., homogeneous) for all levels of the third factor.

* The fitted values are not given by simple, intuitive formulas.

* Number of model parameters = 1+(/—1)+(J—1)+(K—-1)+(I-1)(J-1)+(I—-1)(K—-1)+(J—-1)(K-1).
* Residual df = (I —1)(J — 1)(K —1).

* For 3-way tables there is only one homogeneous association hypothesis and model (UW,V Z, W 7).

* The relationship implied by this model is also sometimes referred to as All Pairs Conditionally Independent.

Testing Nested Models for 3-way Contingency Tables

These are called hierarchical log-linear models:

Type of Independence Null Hypothesis Log Linear Model

None — (VW Z)
Homogeneous Association  3x Conditional Independence Hy (VW,VZ,WZ)
Conditional Independence ;| = TiekTej|k VZWZz), VW WZ), VW, VZ)
Joint Independence Tijk = TiekTeje (VZ,W), (V\WZz),(VW, Z)

Mutual Independence Tijk = TieeTejeTeek (V\W,2)
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Goodness of Fit Statistics for Log Linear Models

* The fit of a log linear model can be judged based on the deviance assuming an underlying Poisson
distribution for the cell counts.

¢ We know from before that the deviance statistic has the form

D= 2222@% |0g<0ijk>~
i J k& Eiji

e D~ X?IJ K)—q under Hy where ¢ is the number of parameters in the model under Hy.

¢ For nested models:
AD=Dy— Dy~ xo_,.

Application 1: General Social Survey
2008 US General Social Survey (2 x 5 x 7)

Gender (G) Highest Degree (D) Political Party Affiliation (P)
1 2 3 4 5 6 7

< Highschool 32 20 18 29 11 12 9

< High school 67 85 63 68 48 65 44

Males Junior college 12 14 6 9 13 17 6
Bachelor 23 21 29 20 19 32 20

Graduate 16 9 12 13 7 14 13

< Highschool 31 25 16 58 8 8 16

High school 118 98 69 88 30 82 54

Females Junior college 20 16 13 13 7 16 7
Bachelor 33 23 28 11 16 44 23

Graduate 38 20 8 13 3 13 9

* Note that there is no obvious response variable.

» Since we are interested in the association among all three variables, we consider methods based on
log-linear models.

* Let G denote gender, D denote highest degree obtained, and P denote political party affiliation.

* We know the log linear model

G, D,.P,.GD,.GP , DP ,  GDP
log(pije) = u+u;” +uj +up +ugy +ug +uj +uiiy

will provide a perfect fit to the data (since it is saturated).
* We seek to find a simpler model which describes the data well.
* In other words, we are looking for a simpler representation of the relationship between the gender, highest

degree, and political party affiliation.

R Code
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## Input the data for the 5 x 7 x 2 contingency table

freq <- ¢(32, 67, 12, 23, 16, 20, 85, 14, 21, 9, 18, 63, 6, 29,
12, 29, 68, 9, 20, 13, 11, 48, 13, 19, 7, 12, 65, 17, 32,
14, 9, 44, 6, 20, 13, 31, 118, 20, 33, 38, 25, 98, 16, 23,
20, 16, 69, 13, 28, 8, 58, 88, 13, 11, 13, 8, 30, 7, 16,
3, 8, 82, 16, 44, 13, 16, 54, 7, 23, 9)

names <- list(D = c("LT HSc", "HSc", "JunCol", "Bachelor", "Graduate"),
P =c("1", "2", "3", "4" "5" "e" "7"), G = c("male", "female"))

party.3D <- array(freq, c(5, 7, 2), dimnames = names)

## Flattened contingency table

Library(plyr)

party <- count(as.table(party.3D))

party <- party[, 1:4]

names(party) <- c("D", "P", "G", "Y")

# Fit the saturated model

modell <- glm(Y ~ G * D x P, family = poisson, data = party)

model1$df.residual

modell$deviance

# Fit the homogeneous association model

model2 <- glm(Y ~G * D + G * P + D * P, family = poisson, data = party)

model2$df.residual

model2$deviance

1 - pchisq(model2%$deviance - modell$deviance, model2$df.residual
model1$df.residual)

# Fit the three conditional independence models

model3 <- glm(Y ~ G * D + G * P, family = poisson, data = party)

model3$df.residual

model3$deviance

1 - pchisq(model3$deviance - model2$deviance, model3$df.residual -
model2$df.residual)

model4 <- glm(Y ~ G * D + D * P, family = poisson, data = party)

model4$df.residual

model4$deviance

1 - pchisq(model4$deviance - model2$deviance, model4$df.residual -
model2$df.residual)

model5 <- glm(Y ~ G * P + D * P, family = poisson, data = party)

model5%$df.residual

model5%$deviance

1 - pchisq(model5%$deviance - model2$deviance, model5%$df.residual -
model2$df.residual)

# Fit the two joint independence models nested within

# model)

model6 <- glm(Y ~ G + D x P, family = poisson, data = party)

model6$df.residual

model6$deviance

1 - pchisq(model6$deviance - model5$deviance, model6$df.residual -
model5%$df.residual)

model7 <- glm(Y ~ G * P + D, family = poisson, data = party)

model7$df.residual

model7$deviance

1 - pchisq(model7$deviance - model5%$deviance, model7$df.residual -
model5$df.residual)
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R Output: Models 1 (GDP) and 2 (GD,GP,DP)

# Fit the saturated model

modell <- glm(Y ~ G * D x P, family = poisson, data = party)
model1$df.residual

(1] @

model1$deviance

[1] -9.547918e-15

# Fit the homogeneous association model

model2 <- glm(Y ~G * D + G * P + D * P, family = poisson, data = party)

model2$df.residual
(1] 24
model2$deviance

[1] 28.81808

1 - pchisq(model2$deviance - modeli1$deviance, model2$df.residual -
model1$df.residual)

[1] 0.2270527

* Hy: Homogeneous association model (2) is adequate
Hy: ugfp =0Vi,j,k versus Hy: i, j, k s.t. ufjfp #0.
AD = Dy — D4 = 28.818 — 0 ~ 3, under Hy.
p =P(x3, > 28.818) = 0.227.

* Do not reject Hy that the fit of model 2 is adequate, as compared to model 1.

R Output: Models 3 (GD,GP), 4 (GD,DP), 5 (GP,DP)

model3 <- glm(Y ~ G * D + G * P, family = poisson, data = party)
model3$df.residual

[1] 48

model3$deviance

[1] 130.3407

1 - pchisq(model3$deviance - model2$deviance, model3$df.residual -
model2$df.residual)

[1] 1.650369e-11

model4 <- glm(Y ~ G * D + D * P, family = poisson, data = party)
model4$df.residual

142
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[1] 30
model4$deviance
[1] 52.76878

1 - pchisq(model4$deviance - model2$deviance, model4$df.residual -
model2$df.residual)

[1] 0.0005332749

model5 <- glm(Y ~ G * P + D * P, family = poisson, data = party)
model5$df.residual

(1] 28
model5$deviance
[1] 29.3232

1 - pchisq(model5$deviance - model2$deviance, model5%$df.residual -
model2$df.residual)

[1] ©.9730008

* Reject Hy that the fit of models 3 and 4 are adequate, as compared to model 2.

* Do no reject Hy that the fit of model 5 is adequate, as compared to model 2.
R Output: Models 6 (G,DP) and 7 (D,GP)

# Fit the two joint independence models nested within

# model)

model6 <- glm(Y ~ G + D x P, family = poisson, data = party)
model6$df.residual

[1] 34
model6$deviance
[1] 53.84259

1 - pchisq(model6$deviance - model5%$deviance, model6$df.residual -
model5%$df.residual)

[1] 0.0004189688

model7 <- glm(Y ~ G * P + D, family = poisson, data = party)
model7$df.residual

[1] 52
model7$deviance
[1] 131.4145

1 - pchisgq(model7$deviance - model5$deviance, model7$df.residual -
model5$df.residual)

[1] 1.31870@1e-11
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* Reject Hy that the fit of models 6 and 7 are adequate, as compared to model 5. That is, we can conclude

that model 5 is the “best” model.

Model 2 Model 3 Model 4
2 N_'"B'B'O'o"o """"""" 2 YT e o TTTTTT 2 "0""50;-0 """"" CHE
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Summary of Fitted Models
The following analysis of deviance table summarizes our findings.
Model Form Residual Deviance Residual d.f. p-value
1 (GDP) 0 0 NA
2 (GD,GP,DP) 28.82 24 0.228 (vs 1)
3 (GD,GP) 130.34 48 0.000 (vs 2)
4 (GD,DP) 52.77 30 0.001 (vs 2)
5 (GP,DP) 29.32 28 0.973 (vs 2)
6 (G,DP) 53.84 34 0.000 (vs 5)
7 (D,GP) 131.41 52 0.000 (vs 5)

* Conclude that Model 5 (GP, DP) is most appropriate.

* Conditional Independence: The responders educational level (D) is conditionally independent of his/her

gender (), given his/her party affiliation (P).

* We will return to this analysis in the next topic to discuss interpretation of the regression parameters.

WEEK 11
15th to 19th November

Topic 3g: Log Linear Model Applications Wrap-Up

Application 2: Seatbelt Use and Fatality of Accidents

We now consider the special case of a 2 x 2 x 2 table.



CONTENTS 145

Florida Department of Highway Safety and Motor vehicles (Bishop et al 1975)

Injury (2)

Seatbelt (VV) Ejected (W) Non-fatal Fatal

Ul Yes 1105 14

No 411111 483

Yes 4624 497

Not Used No 157342 1008

* Rewriting the data table in general notation, we have:
Injury (2)
Seatbelt (V) Ejected (W) Non-fatal (k =1) Fatal (k = 2)

Used (i = 2) Yes (j =2) Ya21 Yoo
No(j=1) Y11 Y212
Yes (j = 2) Y121 Y122

NotUsed (i =1) G=1 Y111 Y2

Where Yy, ~ POI(uijp), i = 1,2, 5 = 1,2,k = 1,2.

The saturated model is:

vV, W, Z , . VW, VZ, WZ ,  VWZ
log(pije) = u+uy +uj +up +ug;" +upy” +ug” +ugy”

Try to identify simpler models which still fit the data well and are easy to interpret.

* Note that in this table only y... is fixed and so only the intercept needs to be included by design.

R Dataset

Accident Data

sei y
111 1 157342
2112 1008
3121 4624
4122 497
5211 411111
6212 483
7221 1105
8222 14

R Code

acc.dat$s <- factor(acc.dat$s)
acc.dat$e <- factor(acc.dat$e)
acc.dat$i <- factor(acc.dat$i)

modell <- glm(y ~ s * e x i, family = poisson, data = acc.dat)
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summary (model1)

# Model 2 (VW,VZ, WZ) Homogeneous Association (test vs Model

#1)

model2 <- glm(y ~s * e + s * i + e * i, family = poisson, data = acc.dat)

summary (model2)

1 - pchisq(model2$deviance - modeli$deviance, model2$df.residual -
model1$df.residual)

acc.dat$fv <- model2$fitted.values

acc.dat

# Model 3: (VW, VZ) Conditional Independence Model (test vs

# Model 2)

model3 <- glm(y ~ s * e + s * i, family = poisson, data = acc.dat)

model3$df.residual

model3$deviance

1 - pchisq(model3$deviance - model2$deviance, model3$df.residual -
model2$df.residual)

# Model 4: (VW, WZ) Conditional Independence Model (test vs

# Model 2)

model4 <- glm(y ~ s * e + e * i, family = poisson, data = acc.dat)

model4$df.residual

model4$deviance

1 - pchisq(model4$deviance - model2$deviance, model4$df.residual -
model2$df.residual)

# Model 5: (VZ, WZ) Conditional Independence Model (test vs

# Model 2)

model5 <- glm(y ~ s * i + e * i, family = poisson, data = acc.dat)

model5$df . residual

model5%deviance

1 - pchisq(model5%$deviance - model2$deviance, model5%$df.residual -
model2$df.residual)

R Output: Model 1 (VW Z)

summary (model1l)

Call:
glm(formula =y ~ s * e * i, family = poisson, data = acc.dat)

Deviance Residuals:
[1] © 0 0 @ @ 0 0 0

Coefficients:
Estimate Std. Error z value Pr(>|z])

(Intercept) 11.966177 0.002521 4746.547 <2e-16 **x*
s2 0.960441 0.002964 323.985 <2e-16 **x
e2 -3.527162 0.014920 -236.398 <2e-16 ***
i2 -5.050454 0.031598 -159.836 <2e-16 **%
s2:e2 -2.391856 0.033616 -71.153 <2e-16 *x*x*
s2:12 -1.696148 0.055419 -30.606 <2e-16 **%
e2:i2 2.820028 ©0.056805 49.644 <2e-16 *x*xx
s2:e2:1i2 -0.441970 0.278627 -1.586 0.113
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Signif. codes: @ '*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.6249e+06 on 7 degrees of freedom
Residual deviance: 7.4852e-11 on @ degrees of freedom

AIC: 92.999

Number of Fisher Scoring iterations: 3

R Output: Model 2 (VW,VZ W Z)

summary (model2)

Call:
glm(formula =y ~s xe +s i+ e * i, family = poisson, data = acc.dat)

Deviance Residuals:
1 2 3 4 5 6 7 8
0.01731 -0.21583 -0.10095 ©0.30951 -0.01071 0.31400 0.20704 -1.59987

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 11.966133  0.002521 4746.70 <2e-16 ***
s2 0.960502 0.002964 324.03 <2e-16 **x%
e2 -3.525634 0.014879 -236.95 <2e-16 **%
i2 -5.043620 0.031202 -161.65 <2e-16 ***
s2:e2 -2.399636 0.033340 -71.97 <2e-16 ***
s2:12 -1.717321  0.054015 -31.79 <2e-16 ***
e2:i2 2.797795 0.055256 50.63 <2e-16 *x*
Signif. codes: @ '*xx' 0.001 'xx' 0.01 'x' ©0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.6249e+06 on 7 degrees of freedom
Residual deviance: 2.8540e+00 on 1 degrees of freedom
AIC: 93.853

Number of Fisher Scoring iterations: 3

1 - pchisq(model2$deviance - modeli1$deviance, model2$df.residual -
model1$df.residual)

[1] 0.09114565

acc.dat$fv <- model2$fitted.values
acc.dat

sei y fv
111

1 157342 157335.13193
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2112 1008 1014.86807
3121 4624  4630.86807
4122 497 490.13193
5211 411111 411117.86807
6212 483 476.13193
7221 1105  1098.13193
8222 14 20.86807

* Hp: ud;y% = 0 versus Ha: uly? # 0.
p=P(x7 > 2.854) = 0.09.

* Do not reject the null hypothesis that the fit of model 2 is adequate, as compared to model 1 (saturated).
R Output: Models 3 (VW,VZ), 4 (VW,WZ),5 (VZ,WZ)

# Model 3: (VW, VZ) Conditional Independence Model (test vs

# Model 2)

model3 <- glm(y ~ s * e + s * i, family = poisson, data = acc.dat)
model3$df.residual

(1] 2
model3$deviance
[1] 1680.412

1 - pchisq(model3$deviance - model2$deviance, model3$df.residual -
model2$df.residual)

(110

# Model 4: (VW, WZ) Conditional Independence Model (test vs

# Model 2)

model4 <- glm(y ~ s * e + e * i, family = poisson, data = acc.dat)
model4$df.residual

[1] 2
model4$deviance
[1] 1144.636

1 - pchisq(model4$deviance - model2$deviance, model4$df.residual -
model2$df.residual)

(11 o

# Model 5: (VZ, WZ) Conditional Independence Model (test vs

# Model 2)

model5 <- glm(y ~ s * i + e * i, family = poisson, data = acc.dat)
model5%df.residual

[1] 2
model5$deviance
[1] 7133.978

1 - pchisq(model5%$deviance - model2$deviance, model5$df.residual -
model2$df.residual)

(110
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* Reject the null hypotheses that the fit of models 3, 4, 5 are adequate, as compared to model 2.

Summary of Fitted Models

The following analysis of deviance table summarizes our findings.

Model Form Residual Deviance Residual d.f. p-value
1 (VW Z) 0 0 NA
2 (VW,VZ,WZ) 2.85 1 0.09 (vs 1)
3 (VW,V2Z) 1680.41 2 < 0.001 (vs 2)
4 (VW,W2Z) 1144.64 2 < 0.001 (vs 2)
5 (VZ,WZ) 7133.98 2 < 0.001 (vs 2)

* Conclude that Model 2 (VW,V Z, W Z) is most appropriate.

* Homogeneous Association: All variables are associated in a pairwise fashion, but this degree of association
does not depend on the level of the third variable.

Interpretation of Model 2 (VW,VZ W Z)

* Consider the following table of fitted and observed values from this model:

Injury (2)
Seatbelt (V) Ejected (W) Non-fatal (k = 1) Fatal (k = 2)

Used (i = 2) Yes (j = 2) fiao1 = 1098.1, 4221 = 1105 flaoz = 20.9, Y222 = 14
No (] = 1) ﬂ211 = 4111179, Y211 = 411111 ﬂglg = 4761, Y212 = 483
Yes (_] = 2) ﬂ121 = 46309, Y121 = 4624 ﬂ122 = 490]., Y122 = 497

NotUsed (=1 No (G =1) jiyyy = 157335.1, yrny = 157342 finyz = 1014.9, y112 = 1008

* And the following row percentages (across levels of VII/):

Injury (2)
Seatbelt (V) Ejected (W) Non-fatal Fatal
Used Yes 98.7 1.3
No 99.9 0.1
Yes 90.4 9.6
Not Used No 9.4 0.6

VoW _ Z_ VW VI WZ_ A VWZ
log(pije) = u+u +uj +up +ug +un” +up” +ugy

* In previous Poisson log linear models (ships & rats examples) the regression coefficients had log Relative
Rate interpretation

* Parameters for log linear models of contingency tables will have a log Odds Ratio interpretation!
* For 2 x 2 x K tables we can define:

— Conditional Odds Ratio:
¢VW _ T1gT22k
(k) —

T12kT21k

— Marginal Odds Ratio:
wvw _ T11e7T22e

1207210
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Conditional Odds Ratio (2 x 2 x K)

¢ The Odds Ratio of
Z =k.

in subjects with W = 2 versus W = 1 at (conditional on being) level

|W =2,Z =k)
W =1,Z=k)

wW:P( | W =2,Z = k)] B(
P( |W =1,Z=k)/P(

7T22k/7T12k

T21k/T11k

T11kT 22k

T12kT 21k

7T22k/7T21k

Tiok/T11k

* This is also the Odds Ratio of response (I/ = 2) in subjects with at (conditional on

being) level Z = k.

versus

Interpretation of Model 2 (VW,VZ W Z)

Z=2 W=2 w=1
Q: Find the (conditional OR) for a fatal accident for those ejected versus not ejected among passengers
who did not use their seatbelt.

—_———

V=1

7T122/7T121
7T112/7T111 .

* Find the odds of a fatal accident (Z = 2) in ejected (W = 2), no seatbelt (V = 1).

P(Z:2|W:27V:1) o IP’(Z:2,W:2,V:1) _ T122 ,11,122//1... . H122

P(Z=1|W=2V=1 PZ=1,W=2V=1)  moa1 121/ lees  f121

cOR =y} =

Vi w  Z  log(uijr)

1 2 2 u+ul +uf +ulh?
1 2 1 u+ul
log(p122/p121) =

* Find the odds of a fatal accident (Z = 2) in not ejected (W = 1), no seatbelt (V = 1).

P(Z=2|W=1V=1)

P(Z=2W=1V=1)

T2 p112/ Heee _ M112

P(Z=1|W=1,V=1)

P(Z=1,W=1,V=1) 711 111/ less 111

VoW  Z  log(pijk)

1 1 2 u+uy +uf
1 1 1

log(p122/pt121) = us

* The expression for the (log) conditional OR is:

7T122/7T121
7T112/7Tul

log(cOR) = Iog(

) _ |og(ﬂ122//$121

—uf = udp?.

= ( )

)

,u112/l£111
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¢ The estimate of the conditional OR is:

CcOR = exp{iyy?} = exp{2.80} = 16.4.
Q: How would this change if the 3-way interaction term were included in the model?

* No change in the cOR for V = 1 (no seatbelt).

* Check that for V' = 2 (seatbelt worn) the cOR becomes:

1/1ZW _ T222/Ta21

wz VWZ

= exp{uyy’ +u }.
2 22 222
@) 71'212/71'211

VoW zZ |°g(,uijk)
2 2 2 wtud +ul +uf +uldV Fulf +ulh? +ul
2

2 1 utuy +ud +udV
log(p122/t121) =
V.o w Z  log(pijk)
2 1 2 u+uy +uf +ul?
2 1 1 u+uy
log(pu1ae/p121) = uf +uyy”
( ) = (uf +ub?) = ulh? +uby?.

¢ We can construct several conditional odds ratios for this data set for the saturated model M1 and evaluate

under M2:
Outcome Comparison At Form (M1) Value (M2)
Z =2 W=2vs.W=1| V=1 exp{uly?} exp{2.80} = 16.4
Z =2 W=2vs. W=1| V=2 | exp{uf? +uly?} | exp{2.80+ 0} =16.4
7Z =2 V=2vs.V=1|W=1 exp{uy?} exp{—1.72} = 0.18
Z=2 | V=2vs. V=1 |W=2| exp{ud? + ud¥?} | exp{-1.72+0} = 0.18
W =2 V=2vs.V=1|2Z=1 exp{uyy’ } exp{—2.40} = 0.09
W =2 V=2vs.V=1|Z=2|exp{uly’ +ul¥?} | exp{—2.40 + 0} = 0.09

* Homogeneous Association: All variables are associated in a pairwise fashion, but this degree of association
does not depend on the level of the third variable.

* That is, the conditional odds ratios between two factors are identical at all levels of the third factor.
* These odds ratios make sense since they suggest:

— The relative odds of fatality among those ejected compared to those not ejected is 16.4,

— The relative odds of fatality among those using a seatbelt compared to those who do not use a seatbelt
is 0.18, and
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— The relative odds of ejection for those using a seatbelt compared to those who do not use a seatbelt is
0.09.

* The fact that we could not reduce the model further means these terms are all significant.

* The odds ratios relating to fatality could have been obtained from a logistic model, so it is natural to ask:
What we have gained here?

* We are able to examine the relationship between all variables including V' and W.

Application 1: General Social Survey
2008 US General Social Survey (2 x 5 x 7)

Gender (G) Highest Degree (D) Political Party Affiliation (P)
1 2 3 4 5 6 7

< High school 32 20 18 29 11 12 9

< High school 67 85 63 68 48 65 44

Males Junior college 12 14 6 9 13 17 6
Bachelor 23 21 29 20 19 32 20

Graduate 16 9 12 13 7 14 13

< Highschool 31 25 16 58 8 8 16

High school 118 98 69 88 30 82 54

Females Junior college 20 16 13 13 7 16 7
Bachelor 33 23 28 11 16 44 23

Graduate 38 20 8 13 3 13 9

* Recall the best fitting model was Model 5 (GP, DP).

* Conditional Independence: The responders educational level (D) is conditionally independent of his/her
gender (), given his/her party affiliation (P).

G¢G.,,D, P_ GP_  DP
log(pijr) = u+ug” +uj +up +ui +ujy -
* The regression parameters will have various log Odds Ratio interpretations.

“0Odds Ratio” Definitions in 2-way Tables (I x J)
* For a general (I x J) table, many types of “OR” can be defined.

- Nominal Odds Ratios are formed by comparing back to a reference category (e.g V =1, W =1ina
2-way table):

P(V=i|W=j)
1/)N vw _ P(V=1[W=j) _ TijT11
& TOP(V=IW=1) T g
B(V=1|W=1) Lty

— Local Odds Ratios are formed by comparing 2 successive rows (i and i + 1) and columns (j and j + 1)
of an I x J table:
P(V=it+1|W=j+1)
Lvw _ _P(V=iW=5+1) _ TijTi41,j+1
ij T P(V=i41l|W=j)
P(V=i][W=j)

Ti4+1,57T0,5+1
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Odds Ratios for 3-way Tables (I x J x K)
* For a 3-way table consider conditional and marginal versions of the nominal or local odds ratios.

— Conditional Local OR condition on the level of a third variable:

PEVW _ M1+ Lk/ Tig+lk _ TighTit1,j+1k
Cy = = .
(k) 7Ti+1,j,k/7fijk Ti4+1,5,kT4,54+1,k

— Marginal Local OR ignore the level of a third variable:

MVW _ Titlj+le/Tijtle  TijeTitlj+l,e
ije - -

Tit1,j.e/Tije Tit1,j,0Tij+1,e
* Most relevant when factor variables have a meaningful order.
* These aren’t true odds ratios. Actually ratios of relative probabilities.
General Social Survey: Interpretation
G, D, P, GP DP
log(pijn) = w+w;” +uy’ +up +ugg +ujp -

P=2

Q: Find an expression for the Conditional Local OR for being a “not strong Democrat” versus a
“strong Democrat” comparing those with “a High School Degree” to those with “less than High School”,

P=1 D=2 D=1
among “males”.

G=1

YL DP — TijkTi,j+1,k+1
Ti,5+1,kTi4,5,k+1
wL pp _ T1117T122

(i T121M112

(general expression)

) P DP

log(¢{171) = log(tt122/p1121) — log(pn1a/pinn) = ( — Uy =upy -

G D P log(ijk)

1 2 2 u+ud +ul +ulf
12 1 utud
log(p122/p1121) =

11 2 u+ub
1 1 1 U

|0g(,u112/lt111) = Uéj

bEET = exp{ah)"} = exp{0.32560} = 1.38.

R Output: Model 5 (GP, DP)
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Call:
glm(formula =Y ~ G * P + D * P, family = poisson, data = party)

Deviance Residuals:
Min 1Q Median 30 Max
-1.6951 -0.3522 0.0008 ©0.3338 1.6843

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.18762 0.14133 22.554 < 2e-16 %%
Gfemale 0.47000 0.10408 4.516 6.31e-06 **x*
P2 -0.17913 0.21421 -0.836 0.403026

P3 -0.37758 0.23105 -1.634 0.102218

P4 0.43821 0.18857 2.324 0.020134 *
P5 -0.74581 0.27684 -2.694 0.007059 **
P6 -0.96398 0.27169 -3.548 0.000388 *xx**
P7 -0.75026 0.25665 -2.923 0.003464 **
DHSc 1.07722 0.14587  7.385 1.53e-13 »x*%
DJunCol -0.67740 0.21708 -3.121 0.001805 *x*
DBachelor -0.11778 0.18366 -0.641 0.521316
DGraduate -0.15415 0.18545 -0.831 0.405845
Gfemale:P2  -0.26994 0.15179 -1.778 0.075332 .
Gfemale:P3  -0.42419 0.16158 -2.625 0.008658 *x*
Gfemale:P4  -0.19499 0.15327 -1.272 0.203302
Gfemale:P5 -0.89609 0.19147 -4.680 2.87e-06 x*xx*
Gfemale:P6  -0.31790 0.15528 -2.047 0.040631 *
Gfemale:P7  -0.30044 0.17572 -1.710 0.087303 .
P2:DHSc 0.32560 0.22128 1.471 0.141170@
P3:DHSc 0.27922 0.24138 1.157 0.247374
P4:DHSc -0.49327 0.19795 -2.492 0.012704 *
P5:DHSc 0.33505 0.29450 1.138 0.255252
P6:DHSc 0.91748 0.27943  3.283 0.001026 **
P7:DHSc 0.28887 0.26736 1.080 0.279943
P2:DJunCol 0.27193 0.32043 ©0.849 0.396082
P3:DJunCol 0.09548 0.35940 0.266 0.790501
P4:DJunCol  -0.69747 0.32260 -2.162 0.030618 =*
P5:DJunCol 0.72869 0.38698 1.883 0.059698 .
P6:DJunCol 1.17817 0.35697  3.301 0.000965 **x*
P7:DJunCol 0.02347 0.40503 ©0.058 0.953786
P2:DBachelor ©.09531 0.28050 ©.340 0.734016
P3:DBachelor 0.63447 0.28405 2.234 0.025506 *
P4:DBachelor -0.91414 0.27836 -3.284 0.001023 *x*
P5:DBachelor ©.72869 0.33902 2.149 0.031601 =*
P6:DBachelor 1.45278 0.31127  4.667 3.05e-06 *x*x*
P7:DBachelor ©.66011 0.31143  2.120 0.034037 *
P2:DGraduate -0.28522 0.30182 -0.945 0.344669
P3:DGraduate -0.37648 0.33735 -1.116 0.264425
P4:DGraduate -1.05366 0.29043 -3.628 0.000286 ***
P5:DGraduate -0.48770 0.43246 -1.128 0.259431
P6:DGraduate 0.45426 0.34847 1.304 0.192375
P7:DGraduate ©.02632 0.34619 0.076 0.939403

Signif. codes: @ '**x' 0.001 '**' 0.01 'x' ©.05 '.' 0.1 ' ' 1
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(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1257.316 on 69 degrees of freedom

Residual deviance: 29.323

AIC: 453.83

Number of Fisher Scoring iterations:

General Social Survey: Interpretation

on 28 degrees of freedom

4

log(ptijr) = u+ uZG + u}j + ukp + uZ-C,';P + u;-jkp.

P=T7

Q: Find an expression for the Marginal Nominal OR of being a strong Republican versus a
“strong Democrat” for “females” vs “males”.
—_———  ——

P=1 G=2 G=1
f\kaP ML LI (general expression)
TielT 1ok
M Gp _ Heetlliel
2e7 H2e1H10e7
log( %7@3) = log(fi2e7/ 112e1) — log(i1e7/ 1101) = U§7P
G D P log (ki)
2 g 7 u—l—ug—l—uf—l—uf—l—ugf—l—uﬁp
2 1 utuf +u?
|Og(‘u2.7/‘u,2.1) -
Ly 7 u+ug+u$+u$f
Ly 1 U+ uj
log(p1e7/p1e1) = uf +ufl’

Q: Find a general expression for the Marginal Nominal OR for party affiliation and gender.

M GP
(@

MEP —exp{u§P}, i=2,k=2,...,7

Q: Find a general expression for the Marginal Nominal OR for party affiliation and highest degree earned.

wM DP TMejkTe,j+1,k+1
o7k
J Te,j+1,kMe,j,k+1

_ HMejkMe,j+1,k+1

He,j+1,kMHe,j k+1

_ DP , . DP DP DP
=exp{uj + Uy g1 — Uitk — Uikl )
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log(v27,”F) = 108 (1tejk/te.j+1,k) — 108 (LLe skt 1/ tho j1,b41)

~(

DP

D, . DP D DP
) = (U 4 ujegr — Uit — U ey1)
DP D _ . DP DP

_..D _ _ _ o D
= Uy Ui~ Uy T Ut e T U T U U Uk

DP DP

= Uik T Uitk T

DP

DP
Uy gt1 T UG k41

= U’J%P + “gj'j+Pl,k+1 - ujDJrPl,k - Ufzfﬂ'
Therefore,
¢£\§kDP = eXp{uﬁﬂP + u]DJrPl,kJrl - ujD+191,k - Uf}fﬂ}
G D P log(pijk)
i J k u+uf +ul +uf +ufl +uh”
i Jj+1 k u+uf+uj-D+1+ukP+u§€P+ujD+Pl’k

log(ttejk/He j+1.k)

i k+1
i j+1 k+1

G..D..P GP DP
B B S N
Ut U F Uy Ut U T U

_ . D  DP D DP
log(fte,j,k+1/Hejt1,k+1) = Uj +UTp ) — Uiy — UP

Topic 4a: Introduction to Overdispersion

Chapter 4: Introduction to Overdispersion
* Recall the Exponential Family:

f(y:0,0) = exp{y@—(b(@)

s e},

Canonical parameter: 6.
* Dispersion parameter: ¢.

* Mean: E[Y] =¥V (0) = p.

Variance: Var(Y) = b"(0)a(o).

 Up to now, we always had either ¢ = 1 (Binomial & Poisson) or ¢ known (Normal with ¢2 known).

Introduction to Overdispersion

156

* Frequently we will have a poor fit of a GLM to the data because the variance of our model is too restrictive.

Recall for the Poisson: E[Y] = Var(Y) = p.
* But what if we observe count data where Var(Y) > E[Y]?

— Here, we say the data is overdispersed.

Recall for the Binomial: E[Y] = n7 and Var(Y) = nn(1 — 7).

We will cover 2 methods for dealing with overdispersion:

1. Ad hoc: Introduce and estimate a dispersion parameter ¢ for a distribution that doesn’t naturally

have one.

2. Mixed Model: Introduce a new random variable which acts as a dispersion factor.
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Why Adjust for Overdispersion?
* If the data is overdispersed, then generally Var(Bj) will be underestimated.
* We adjust for overdispersion to:

— “Correct” the fitted standard errors.

— Increase the width of confidence intervals to reflect variation in the data.

- Reduce the risk false positive findings for covariate effects (i.e., when we reject Hyp: 3; = 0 because
se(f;) is too small).

Ad Hoc Method for Poisson

¢ Consider one observation from a Poisson distribution:

f(y;0,0) = /“Ly;_u = exp{ylog(n) — 1 — log(y!)}.
0 =log(p) bO)=¢€ E[Y]=V(0)=¢e=p.
p=1 a(¢) =1 Var(Y) =b"(0)a(¢) = €’ = pu.

* We want to allow for data where Var(Y) > E[Y].

* Introduce a dispersion parameter a(¢) = ¢ > 0.

* Let Var(Y) = u¢ to allow for extra Poisson variation.

 This does not actually correspond to an actual probability model.

* How do we estimate ¢?

Ad Hoc Method for any GLM

* Consider one observation from the exponential family:

[ (yi, 0;,0) = exp{w + c(yi; ¢)},

where we assume a;(¢) = ¢/w;.

* We can then write the log-likelihood of a random sample as:
= L0y, 0)
60, — b(6;
=S w2y

¢ Consider a LR/Deviance test of

— Hj: p-dim model constrained is adequate ).
— Hj: g-dim model is adequate @), n>q>p.

¢ The Deviance can be written as:

D~

| |
[N}
—~

ae@—aé@)

szylﬁ — b(0;) sz 9))

)

I
[\)
Y

SNl

where D is the deviance from a LRT when ¢ = 1, that is, the distribution with a;(¢) = 1/w; (easy to get
from R).
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D
Dr ==,
¢

¢ Recall Hy: unsaturated p-dim model is adequate vs ¢g-dim super model.

* Scaled Deviance: D* ~ ngp under Hy, which implies Deviance: D ~ ¢X37p under Hy.
* Note: ¢ = n if the alternative model is the saturated model.

* Fact: E[x},] = m and therefore E[x} ] =n — p.

* Fit an unsaturated p-dim model with a GLM with ¢ = 1 to estimate D.

* Checkif D ~ x}_, by comparing to E[D] = n — p.

- If D > n — p, then this indicates overdispersion exists (need to estimate ¢).

— If D = n — p, then ¢ = 1, and there’s no overdispersion.
* How do we estimate ¢?
* Fit an unsaturated p-dim model with a GLM with ¢ = 1.

¢ Method of Moments estimator:

* How do we use ¢ to adjust standard errors?

* Unadjusted covariance matrix (from GLM with ¢ = 1):
Cov(B) = (XWX ") ' =771
* Adjusted covariance matrix: . . A
Covagi(B) ~ (XWX )t =¢Z .
* Adjusted standard errors:

seaqi(Bj) = \/;se(,é’j).

Summary: Ad Hoc Method
1. Fit the usual GLM to the data and find the best fitting model.
2. Check for evidence of overdispersion (i.e., D > n — p).

3. If overdispersion is present, estimate
D

¢ = :
n—p

4. Adjusted covariance matrix and standard error estimates

Covadj(B) = &Cov(,é) = g?)Iil, seadj(ﬁj) = \/Tse(ﬁj).

» This does not change the estimates j3; from the GLM.
* May change the significance of the estimates though.

* With ¢ > 1, confidence intervals will increase in width.
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Application: Analysis of an Epilepsy Trial
* Clinical trial was conducted involving 59 patients with epilepsy.

* Patients were randomized to one of two treatments, a standard therapy or a new drug designed to reduce
the number of epileptic attacks experienced.

* The primary response is the number of attacks experienced during the first two weeks after randomization.
* The data are given on the next slide where:

- Y}, = number attacks in k™ period after randomization.

treat is the treatment indicator variable with treat=1 for the experimental treatment and treat=0
otherwise.

prior records the number of epileptic attacks experience for the month prior to entry into the study.

age is a patient age at randomization in years.

R Data for Univariate Analysis

* First consider analyses based on the data from the first two-week period after randomization, that is, Y;q,
i=1,2,...,n.

* Poisson Model, that is, Y;; ~ POI(y;), with log(u;) = =] 8.
* Explanatory variables:

x;1 = [{treat=1},
Tio = ]I{prior},
x;3 = [{age}.

* We are primarily interested in the treatment effect 3.

Data from Epilepsy Trial

We show the first 5 rows.

treat prior age yil treatf treatft

1 0 11 31 5 0 0
2 0 11 30 3 0 0
3 0 6 25 2 0 0
4 0 8§ 36 4 0 0
5 0 66 22 7 0 0

R Code and Output: Poisson Model

poissonl <- glm(yil ~ treatft + prior + age, family = poisson,
data = epi.dat)
summary (poissonl)

Call:
glm(formula = yi1 ~ treatft + prior + age, family = poisson,
data = epi.dat)
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Deviance Residuals:
Min 10  Median 30 Max
-3.1032 -1.3062 -0.5186 ©.2927 5.1109

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.2049069 ©.2269314 0.903 0.3666

treatftil -0.2046787 0.0895007 -2.287 0.0222 *

prior 0.0253958 0.0009733 26.092 < 2e-16 ***

age 0.0324881 0.0063375 5.126 2.95e-07 **x*
Signif. codes: @ 'xxx' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 746.44 on 58 degrees of freedom
Residual deviance: 197.61 on 55 degrees of freedom

AIC: 402.11

Number of Fisher Scoring iterations: 5

Results of Fitted Poisson Model

log(pi) = Bo + Brxi1 + Pazio + B3xss.

Model Parameter Estimate se

poissoni 51 —0.2047 0.0895

RR = exp{f1 } = exp{—0.2047} = 0.815.
* The relative rate of seizures in the treatment group versus the control group over the first two weeks of the
study controlling for prior seizure count and age.
Ad Hoc Method
* D > n — p, so we need to account for overdispersion in this model:

D 19761

= 3.593.
n—p 59—4

¢ =
* Use ¢ to adjust the standard error estimates:

SRag(B1) = \/55%(31) = 1/3.593(0.0895) = 0.1696.

Model Parameter Estimate se S/A\eadj
poissoni b1 —0.2047 0.0895 0.1696
10) 3.593

* In the Poisson model the treatment effect was statistically significant (p = 0.0222).
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* [Is 3 statistically significant after account for the overdispersion?
* Test Hy: 51 = 0 versus Hu: 57 # 0 using a Wald test:

. 1B —0]  |-0.2047]

= =1.21.
Saqi(B1) 01696

p="P(|Z] > 1.21) = 0.23.

* After adjustment for overdispersion, we do not reject the null hypothesis of no treatment effect.

Mixed Poisson Model

* To form a Mixed Model we introduce a new random variable u; which acts as a dispersion factor. Assume:

E[uz] =1 and Var(u,») = ¢

* For a Poisson model let: Y; | u; ~ POI(u;\), so that

(u\)Vie uir

flyi luis A) = "

,y=0,1,2,....

¢ This is called a mixed Poisson model.
 The u; > 0 factor deflates (u; < 1) or inflates (u; > 1) the mean response for the i subject relative to \.
* Recall we assume E[u;] = 1 and Var(u;) = ¢.
¢ Find the unconditional mean and variance of Y;:
E[Y;] = E[E[Y; | ui]]

= A = (the population mean response).

Var(Y;) = Var(E[Y; | w;]) + E[Var(Y; | u;)]
= Var(u;A) + E[u; \]
= \?Var(u;) + AE[uy]
=+ A
= A1+ o).

* The variance is inflated by a factor of 1 + \¢.
* Now we need to pick a distribution for u; > 0.
¢ Assume u; has a Gamma Distribution:

1 uq—le—ui/57

[(a)p>

g(u’u O[,ﬁ) =

with E[u;] = o and Var(u;) = af?.
* With E[u;] = 1 and Var(u;) = ¢, this implies « = 1/¢ and § = ¢.

* Mixed Poisson model with Gamma distribution = Negative Binomial distribution.
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We will derive the marginal (unconditional) likelihood.

¢ We've assumed that u; has a Gamma Distribution:

L udtemwi/B,

g(ui;OZ?ﬁ) = F(Oé)ﬂa i

Fact: the probability mass function’s integrate to one,

> 1
1= u® e /B Q.
|, T

Which implies:
e}
r(a)b’“z/ u* e/ du.
0

Therefore,

P(Yis A, @) :/0 i | wis Ng(ug; @) dug;
[ e e
T O

AV bl
= — uy’+a_1eiui()‘+1/ﬁ) dU’Z
vl (a)p* /0 '

B Vi B yita
= pi@pe @it O‘)(l + ﬂA)

CTwit+a)( A8 " 1 “
-~ yill(a) (1+A6> (HAﬁ)

dui

_r<yi+¢1>< Ao )( 1 >¢1
wal(e7h) \1+X¢ 1+ X )

Negative Binomial Distribution

* The pmf of the Negative Binomial can be written as:

PX =) = r<5>(if<§i)1> <1ib)<1ib>

with E[X] = ab, and Var(X) = ab(1 + b).

* Here we have Y; ~ NB(a = 1/¢,b = A\¢), where

BIY] = ab = Z(\) = A

Var(Y;) = ab(1 + b) = %(w)u +00) = A1+ Ad).

162

* Therefore, we've shown that Poisson model mixed with Gamma distribution = Negative Binomial

distribution.
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Negative Binomial Model
* Now consider including covariates in the model.

* Assume we are using a log link:
log(\i) = 2/ B.
The likelihood for a sample of size n with Y7,...,Y,, and x; a p x 1 vector of explanatory variables is:

T P(yi+¢1)< pe®i P )y( 1 >¢1>
L(ﬁad))H( y:\D(¢~ 1) 1+¢emiTﬂ 14,_(;5@“3:‘3 '

i=1

* Not a member the exponential family (unless ¢ known).

* Use iterative maximization in R: glm.nb() from MASS library.
- Maximize ¢(8, $(T)) at the current estimate ¢(") = B(") (IRWLS).
— Maximize /(8" ) with respect to ¢p —> P,

WEEK 12

1129 to 3rd December

Topic 4b: Poisson Overdispersion

Methods for Handling Overdispersion
1. Ad hoc Method:

1. Fit the usual GLM to the data and find the best fitting model.
2. Check for evidence of overdispersion (i.e., D > n — p).

3. If overdispersion is present, estimate
D

¢ = :
n—p

4. Adjusted covariance matrix and standard error estimates

Covas(B) ~ HCov(B) = T, seass(s) = \/bse(By).
2. Mixed Model Method:

* For a Poisson model, let Y; | u; ~ POI(u;\).
* Introduce dispersion factor u; ~ GAM(a = 1/¢, 8 = ¢).
e Then, Y; ~ NB(a = 1/¢,b = A¢) with E[Y;] = ); and Var(Y;) = X\;(1 + \;9).

Application: Analysis of an Epilepsy Trial
* Clinical trial was conducted involving 59 patients with epilepsy.

* Patients were randomized to one of two treatments, a standard therapy or a new drug designed to reduce
the number of epileptic attacks experienced.

* The primary response is the number of attacks experienced during the first two weeks after randomization.
* The data are given on the next slide where:

- Y}, = number attacks in k™ period after randomization.

treat is the treatment indicator variable with treat=1 for the experimental treatment and treat=0
otherwise.

prior records the number of epileptic attacks experience for the month prior to entry into the study.

age is a patient age at randomization in years.
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Univariate Analyses

* First consider analyses based on the data from the first two week period after randomization, that is, Y1,
1=1,2,...,n.

* Poisson Model, that is, Y; ~ POI(u;):
log(pi) = =, B.

* Negative Binomial Model, that is, Y;; | u; ~ POI(u;\;) and u; ~ GAM(1/¢, ¢). Regression:

i = E[Yi | u]

i = UiX;
log(p;) = log(u;) + log(\;)
log(p:) = i + @] B.

* «; = log gamma random variable called a “random effect”, E[«;] = 0.

R Program

epi.dat <- read.table("epi.dat", header = T)

epi.dat$treatf <- factor(epi.dat$treat)

attach(epi.dat)

Library(MASS)

# contrast findings from Poisson and negative binomial

# regression

poissonl <- glm(yil ~ treatf + prior + age, family = poisson,
data = epi.dat)

summary (poisson1)

epi.dat$rdeviancel <- residuals.glm(poissonl, type = "deviance")

epi.dat$fitted.valuesl <- poissonl$fitted.values

negbin2 <- glm.nb(yil ~ treatf + prior + age, link = log, init.theta = 1,
trace = T, data = epi.dat)

summary (negbin2)

epi.dat$rdeviance2 <- residuals.glm(negbin2, type = "deviance")
epi.dat$fitted.values2 <- neghin2$fitted.values

epi.dat

# Constructing deviance residual plots

plot(log(epi.dat$fitted.valuesl), epi.dat$rdeviancel, ylim = c(-5,
5), xlab = "LOG FITTED VALUES", ylab = "DEVIANCE RESIDUALS",
main = "POISSON MODEL")

abline(h = -2, 1ty = 2)

abline(h = 2, lty = 2)

plot(log(epi.dat$fitted.values2), epi.dat$rdeviance2, ylim = c(-5,
5), xlab = "LOG FITTED VALUES", ylab = "DEVIANCE RESIDUALS",
main = "NEG BIN MODEL")

abline(h = -2, 1ty = 2)

abline(h = 2, lty = 2)

# Fitting some additional negative binomial models

negbin3 <- glm.nb(yil ~ treatf, link = log, init.theta = 1, trace = T)

summary (negbhin3)
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R Output: Poisson Model

Call:
glm(formula = yil ~ treatf + prior + age, family = poisson, data = epi.dat)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.1032 -1.3062 -0.5186 ©.2927 5.1109

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.2049069 ©0.2269314 0.903 0.3666

treatfi -0.2046787 0.0895007 -2.287 0.0222 *

prior 0.0253958 0.0009733 26.092 < 2e-16 ***

age 0.0324881 0.0063375 5.126 2.95e-07 **x*
Signif. codes: @ '**x' 0.001 'xx' ©.01 'x' .05 '.' @.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 746.44 on 58 degrees of freedom
Residual deviance: 197.61 on 55 degrees of freedom
AIC: 402.11

Number of Fisher Scoring iterations: 5

Results of Fitted Poisson Model

¢ Estimated relative rate of seizures in treatment versus control:

RR = exp{f;} = exp{—0.2047} = 0.815.

* Ad hoc estimate of dispersion factor and adjusted standard error for 3

D 19761

= 3.593.
n—p 59—4

é=

$adi(P1) = \/;sfe(ﬁl)\/3.593(0.0895) = 0.1696.

* Adjusted Wald-based hypothesis test of Hp: 51 = 0 versus Ha: 51 # 0:

1-0.2047|
—p(|7] > 22220 a3,
b (' > 5169

* Adjusted 95% confidence interval for the relative rate:

exp{ 1 = 20.975 i (1)} = exp{—0.2047 + 1.96(0.1696)} = (0.58, 1.14).

R Output: Negative Binomial Model

165
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Call:
glm.nb(formula = yil ~ treatf + prior + age, data = epi.dat,
trace = T, init.theta = 3.078568736, link = log)

Deviance Residuals:
Min 10  Median 30 Max
-2.4126 -0.7686 -0.2725 0.2993 2.7605

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.282960 0.423819 0.668 0.5044

treatfi -0.330196 ©.185378 -1.781 0.0749 .

prior 0.028080 0.003171 8.855 <2e-16 **x

age 0.028195 0.012390 2.276 0.0229 *

Signif. codes: @ '**x' 0.001 '**' 0.01 'x' ©.05 '.' @.1 ' ' 1

(Dispersion parameter for Negative Binomial(3.0786) family taken to be 1)
Null deviance: 172.151 on 58 degrees of freedom
Residual deviance: 63.831 on 55 degrees of freedom
AIC: 333.51
Number of Fisher Scoring iterations: 1
Theta: 3.079

Std. Err.: 0.875

2 x log-likelihood: -323.513

Results of Fitted Models

Model Parameter Estimate se S€adj
poissonl 51 —0.2047 0.0895 0.1696
b 3.593
negbin2 b1 —0.3302 0.1854
0 3.079 0.875

* For R Negative Binomial Model, # = ¢!, so
* Note: ¢ from Poisson is not the same as ¢ in Negative Binomial.
— Poisson: $&,4i(3;) = \/(%sAe(BJ)
- Negative Binomial: ¢ = §~! already incorporated into standard error estimates.

* se Negative Binomial is larger than naive Poisson se because the Negative Binomial model accounts for the
overdispersion.

* Seé,qj from the Poisson is comparable to seé from Negative Binomial.
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Results of Fitted Negative Binomial Model

¢ Estimated relative rate of seizures in treatment versus control:

RR = exp{f1} = exp{—0.3302} = 0.719.

* Wald-based hypothesis test of Hy: 81 = 0 versus Hu: 31 # 0:

|—0.3302|

P (' > 0.1854) 0.0749

¢ 95% confidence interval for the relative rate:

exp{B1 % 20.975 $agj($1)} = exp{—0.3302 £ 1.96(0.1854)} = (0.50,1.03).

Poisson and Negative Binomial Models — Remarks
* The estimates and standard errors are different in the Poisson and Negative Binomial models.

* The estimates are different in part because the observations are weighted differently for the Poisson and
Negative Binomial estimating equations.

* The standard errors are larger with the Negative Binomial model because it accounts for more variability
in the data (which is needed here).

* Notice the treat variable is only statistically significant in the Poisson model.

Residual Plots for Poisson and Negative Binomial Models

POISSON MODEL NEG BIN MODEL
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R Output: Alternative Negative Binomial Model

Call:
glm.nb(formula = yil ~ treatf, trace = T, init.theta = 0.8738380555,
link = log)

Deviance Residuals:
Min 10  Median 30 Max
-2.0736 -1.0095 -0.5943 0.1446  3.7245

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.23614  0.21139 10.578 <2e-16 **x
treatf1 -0.08663 0.29217 -0.297 Q.767

Signif. codes: @ '**x' 0.001 '*x' 0.01 'x' .05 '.' 0.1 ' ' 1
(Dispersion parameter for Negative Binomial(@.8738) family taken to be 1)
Null deviance: 66.075 on 58 degrees of freedom
Residual deviance: 65.987 on 57 degrees of freedom
AIC: 388.35
Number of Fisher Scoring iterations: 1
Theta: 0.874
Std. Err.: 0.166

2 x log-likelihood: -382.355

Results of Fitted Models

Model Parameter Estimate se S€adi
poissoni 51 —0.2047 0.0895 0.1696
b 3.593
negbin? e ~0.3302  0.1854
0 3.079 0.875
negbhin3 b1 —0.0866  0.2922
0 0.874 0.166

* Recall for the Negative Binomial that Var(Y;) = A\ (1 4+ X\;¢) = Ai(1+ A;/0).
* Compare the 6 estimates from the two Negative Binomial Models:

by = 051 = (3.079)"" = 0.325.

A~

b3 =051 = (0.874)71 = 1.144,

Univariate Analyses — Final Remarks

. ¢A>3 is much larger than 9232 because the negbin3 model excludes the prior count and age variables.



CONTENTS 169

* This makes sense since they explain much of the variability between the subjects for the rate of events.
* For Negative Binomial: ¢ = 0 would imply no overdispersion in the data.

* To get Var(¢) use the §-method (Var(§~1) # 1/ Var(9)).

* Note that Overdispersion can be caused by a number of factors including:

— Missing important explanatory variables.
— Excess variation that can not be explained by Poisson model.

— Non-independent observations (e.g., clustered data).

Adaptation to Clustered Count Data
» Up to now we have always assumed responses Y; are iid.

* Now consider the following data structure:

Yir o Ying
Y21 0 Y2n,
Ykl - YKng>
where i = 1,..., K are clusters, and j = 1,...,n; are observations per cluster.

* Y;; = response for observation j of cluster i.
* Expect observations within the same cluster to be correlated.
* For example, cluster = families, litters, schools, etc.
* Assume Yj; | u; ~ POI(u;\) independently.
— Observation from same cluster are independent given ;.
— Observation from different clusters are independent.
* Assume E[u;] = 1 and Var(u;) = ¢.
* Then, E[Y;;] = X and Var(Y;;) = A(1 + A¢) as before.
* Correlation within clusters?
Cov(Y;j,Yir) = Cov(IE[Yij | u;], E[Yik | uz]) + ]E[Cov(Yij, Yir | ul)]
= Cov(u;\, u;A\) + E[0]
= A?Var(u;)
= \2¢.

o Cov(Yi V) N Ao
Corl’(szsz) - \/Var(}/;])Var(Y; ) = A(1+)\¢)) = 1+)\¢

* We have a model which accommodates a correlation of responses within clusters.
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Application: Joint Analyses of an Epilepsy Trial
* We now consider analyses based on the full 8 weeks of follow-up data.
 Four responses per subject: Y;1, Vi, Yis, Yi4.
* Consider the total seizure count: Y;, = 2?21 Yij.
* Assume Yj; | u; ~ POI(u;\;) independently.
* This implies Y;q | u; ~ POI(4u;\;).
* Can show that Y;, has an (almost) Negative Binomial distribution (Problem 4.3).
Problem 4.3
o 4
B V) = [ ) s 0) du,
0 Y

p(yij | widi) f
POI(u;\;) GAM(«,p)

T'(yie + ) a6\ 1 &
* L(a) [Tyis! (1 +4)\i5> (1 +4/\zﬂ> .

* This is proportional to a Negative Binomial distribution.

* Y, is sufficient for the joint distribution of Y;1, Yo, Y;3, Yi4.

- Factorization Theorem: If you can write p(z) = h(x)g(0,T(z)), then T'(z) is a sufficient statistic.
Epilepsy Trial Joint Analysis Data

We show the first 5 rows.

id treat prior age yidot treatf

1 1 0 11 31 14 0
2 2 0 11 30 14 0
3 3 0 6 25 11 0
4 4 0 8 36 13 0
5 5 0 66 22 55 0

* yidot is the sum of the seizure counts for each of the four counts obtained every two weeks.

* Explanatory variables:

x;1 = [{treat=1},
20 = I{prior},
T3 = ]I{age}.

* We are primarily interested in the treatment effect ;.
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Negative Binomial Model

pi = E[Yie | ]
i = 4ug
log(1;) = log(u;) + log(4) + log(A;)
log(pi) = a; + Bo + Brzin + Bawiz + Baxis.

* «; is an unobservable random effect, E[o;] = 0.

* We could include log(4) as an offset or let it be absorbed into the intercept term:
Bo = B + log(4).

R Program

epi8.dat <- read.table("epi8.dat", header = T)

epi8.dat$treatf <- factor(epi.dat$treat)

epi.dat

# fitting the negative binomial model for clustered count

# data

joint <- glm.nb(yidot ~ treatf + prior + age, link = log, init.theta = 1,
trace = T, data = epi8.dat)

summary (joint)

R Output: Joint Negative Binomial Model

Call:
glm.nb(formula = yidot ~ treatf + prior + age, data = epi8.dat,
trace = T, init.theta = 3.35735873, link = log)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.3405 -0.7920 -0.1943 0.2992 2.6623

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.060124 0.347696 5.925 3.12e-09 *x*x*
treatf1 -0.212428 ©.153399 -1.385 0.166
prior 0.027540 0.002811 9.796 < 2e-16 **x
age 0.012689 0.010326 1.229 0.219

Signif. codes: @ '**x' 0.001 '*x' 0.01 'x' .05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(3.3574) family taken to be 1)
Null deviance: 181.136 on 58 degrees of freedom

Residual deviance: 63.697 on 55 degrees of freedom

AIC: 476.77

Number of Fisher Scoring iterations: 1

171
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Theta: 3.357
Std. Err.: 0.709

2 x log-likelihood: -466.767

Joint Negative Binomial Model

Model Parameter Estimate se S€adi
joint 5 ~0.2124  0.1534

0 3.357 0.709

b 0.2979

Q1: Based on the joint model give an estimate and 95% confidence interval for the relative rate (over 8
weeks) of epileptic attacks for treated versus control subjects.
* Estimated relative rate of seizures in treatment versus control:
RR = exp{f1} = exp{—0.2124} = 0.809.

* 95% confidence interval for the relative rate:

exp{f1 £ z0.97558(B1)} = exp{—0.2124 = 1.96(0.1534)} = (0.60, 1.09).
Q2: Based on the joint model estimate the correlation between the first and third responses (Y;; & Y;3)
for an untreated subject with a prior seizure count of 11, age 31.

* First, we need an estimate of \; for this subject:

log(4) + log(As) = Bo + B1(0) + Ba(11) + B5(31)
Ai = exp{2.0601 + 0.0275(11) + 0.0127(31)} /4
= exp{2.756}/4
= 3.936.

* Now, find the Correlation:

\s
=~ = = 0.54.
+

Y 3.936(1/3.357)
P 58e  1+3.936(1/3.357)

* Moderate positive correlation between seizure counts within the same subject across time periods.

Topic 4c: Binomial Overdispersion

Origin of Overdispersion for Binomial Responses
* Recall two methods of dealing with Poisson overdispersion:

— Ad hoc method,
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— Mixed model.
* These can also be used to deal with overdispersion with Binomial data.
* For example, extra binomial variation often arises due to unaccounted for clustering in the population.

* When sampling from populations with clustering present the assumptions necessary for the binomial
distribution are violated (i.e., independent and identically distributed binary outcomes).

» Examples of clusters: families, classes, neighbourhoods, litters, repeated measures on individuals.

Clustered Binomial Data
* Suppose a pop consists of a number of clusters each of size k.

* Suppose m individuals are sampled from m/k clusters:

Y;j=1or0 j™ response in the i™ cluster
k
Yie = Z Yi; total responses in the i™ cluster
j=1
m/k k
Yoy = Z Z Yi; grand total
i=1 j=1

* Overdispersion is induced by assuming clusters have different response probabilities:

Yi; | mi ~ BIN(1, ;) independent observations j = 1,...,k
Yie | m; ~ BIN(k, m;) independent clustersi = 1,...,m/k

* Consider a setting where:
E[m;] =, Var(m;) = pr(1 — 7), 0<p<l.

* 7; is analogous to u; in Poisson setting.

With E[r;] = 7 and Var(m;) = pn(1 — 7) examine the effect at three levels: individual, cluster and
grand/overall total.

1. Individual Level — Clustered Binomial Data
E[Yi;] = E[E[Y; | m]] = E[m] = 7.

Var(Y;;) = E[Var(Y; | m)] + Var(E[Y;; | 7))
=E[m(1 —m;)] + Var(m)
= E[r;] - E[n}] + E[r}] - E[r;]”
=TT — 7r2

=7(l—m),
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as expected for a Bernoulli random variable.
Cov(Yyy, Yir) = E[Cov(Yyy, Y | 7)) + Cov(E[Y;, | ], E[Yir | 1))
= E[0] 4+ Cov(m;, m;)
= Var(m;)
=pr(l—m).

Cov(Y;;, Yir)
\/Var i) Var(Yig)

_pr(l—m)
m(l—m)

:p.

Corr(Yi;, Yi) =

* p = intraclass correlation coefficient (accounts for correlation within observations from the same cluster).

2. Cluster Level — Clustered Binomial Data

E[Yia] = E[E[Y;s | 7.]] = Elkm] = k.

Var(Yie) = E[Var(Yie | m;)] + Var(E[Yie | m])
= E[km;i(1 — m)] + Var(km;)
= kE[m;] — kE[x?] + k? Var(m;)
= kE[m;] — k(Var(m;) + E[m;]?) + k* Var(m;)
=k

(k—1)pr(1 —7) + km — kn?
k(k—1)pn(1 —m) + kn(1 — )

m(1—m)((k—1)p+1).

* km(1 — ) is the standard variance for Y;o ~ BIN(k, ).

I
x

e Dispersion parameter 02 = ((k —1p+ 1) accounts for overdispersion at the clustered level.

3. Grand Total Level — Clustered Binomial Data

m/k k m/k
Y=Ye=3) > V=) Y
i=1 j=1 i=1

Var(Y, ZVar o)
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* Dispersion parameter o = ((k — 1)p + 1) also accounts for overdispersion at the grand total level. It
depends on:

— Cluster size k, and the

- Intraclass correlation coefficient p.

Methods for Adjusting for Overdispersion
1. Ad Hoc Method.

¢ Try to use

)

when Var(Yse) > mm(1 — 7).
* Recall 6? = ((k—1)p+1).
* Scaling the variances by 42 will be inefficient when clusters are of unequal size.

* Instead, we prefer to use a mixture/random effects model to account for variation within the clusters.
2. Binomial Mixture Model.

* Recall we assumed E[r;] = 7 and Var(m;) = pr(1 — 7).
¢ Note 0 < m; < 1 which restricts our choice of distributions.

e Let m; ~ Beta(y1,72), where 71,72 > 0 with pdf

I'(v1+72)

N e KA

9(7%;71,’}’2) =

¢ Mean and Variance of the Beta are derived in the course notes:

Al Y172
E ;| = s Var ) = .
i Y1+ 72 (ms) (m +72)*(1+7 + )

* So we select (y1,72) such that:

gat 1
= —, p=—""-.:
Y1+ Y2 14+ +7

* Derive the marginal distribution of the cluster counts Y,.

* Relax the assumption that all clusters are equal sized, that is, let Y;o | m; ~ BIN(k;, 7;).

* Beta function: B(7y1,72) = %

1
P(Yie = Yie) = / P(Yie = Yie | mi)g(mi; 71, 72) dm;
0

1

ks . 1

= Cavie (1 —m)kivie — — gl — )2 dry
/0 (yzo) o ) B(v1,72) ( )

ki 1 ' Yiety1—1 ki—yiet+vy2—1
“)Bam T o

k; 1
= = BWie + 71, ki — Yie + 72).
(yz.) B<’71’ 72) (y T Y 72)

¢ This is called the Beta-Binomial Distribution.
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¢ It can be shown that for the Beta-Binomial:

Em.}:ki< n )
Y1+ 72

:ki7'('7

ks
Var(Yi.):ki< 20! )( V2 )( + 7 +72>
M+ \n+ e T+7 +7

= k(1 =) (1+ (ki — 1)p),

where
o 1

™= , p=—"-.
Y1+ Y2 14+ +7

* See notes for various derivations including
Corr(Yij, Yi) = p.

* Reduces to Binomial variance Var(Y;,) = k;7(1 — 7) when

— p = 0 (no correlation within observations from the same cluster), or
— k; = 1 (clusters of size 1).

* Could test Hy: p = 0 to test for overdispersion.
* The Binomial is nested within the Beta-Binomial so could do so using a Deviance/LR Test.
¢ It can be difficult to get the MLE’s from the Beta-Binomial.

- The gamma function I'( - ) is non-linear.
— R: glm.binom.disp() function in library(dispmod).
— Iterative algorithm for estimating p and .

Application — Pacific Cod Hatching Data
Hatching Data for Pacific Cod Eggs

* To learn about the importance of salinity, temperature, and oxygen concentration on the probability
of hatching for eggs from Pacific cod fish, the following experiment was conducted.

— Salinity (measured in ppt), temperature (measured in Celsius), and oxygen concentration
(measured in ppm), were varied over ranges of practical relevance.

— A known number of eggs were then placed in each of four tanks controlled at each specified
settings for these factors.

— The eggs were then observed to either hatch, or not hatch.

— The total number of eggs hatching for each tank under each set of conditions was recorded.
* This gave four binomial samples for each configuration.
* The eggs in the same tank can not be considered independent.

¢ See Problem 4.1 of course notes.

R Code
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cod <- read.table("cod.dat", header = T)

attach(cod)

# Fit a logistic regression model with all 2-way

# interactions

binoml <- glm(cbind(hatch, total - hatch) ~ salin * temp + temp *
02 + salin * 02, family = binomial)

summary (binom1)

# Fit a beta binomial model to account for overdispersion

library(dispmod)

betabinoml <- glm.binomial.disp(binom1)

summary (betabinom1)

1 - pchisq(binoml$deviance - betabinoml$deviance, 1)

binom2 <- glm(cbind(hatch, total - hatch) ~ temp * 02 + salin *
02, family = binomial)

betabinom2 <- glm.binomial.disp(binom2)

summary (betabinom?2)

betabinom2$dispersion

# Constructing deviance residual plots

par(mfrow = c(1, 3))

fvl <- binom1$fitted.values

rd1 <- residuals.glm(binoml, "deviance")

fv2 <- betabinomi$fitted.values

rd2 <- residuals.glm(betabinoml, "deviance")

fv3 <- betabinom2$fitted.values

rd3 <- residuals.glm(betabinom2, "deviance")

plot(fvl, rdl, xlab = "Fitted Values", ylab = "Deviance Residuals",
main = "Binomial Model", ylim = c(-18, 15))

abline(h = -2)

abline(h = 2)

plot(fv2, rd2, xlab = "Fitted Values", ylab = "Deviance Residuals",
main = "Beta-Binomial Model", ylim = c(-3, 3))

abline(h = -2)

abline(h = 2)

plot(fv3, rd3, xlab = "Fitted Values", ylab = "Deviance Residuals",
main = "Beta-Binomial2 Model", ylim = c(-3, 3))

abline(h = -2)

abline(h = 2)
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R Output — Dataset

print(cod[1:28, ], row.names = F) print(cod[29:56, ], row.names = F)

salin temp 02 hatch total salin temp 02 hatch total
14 2.7 3.6 224 283 26.00 9.3 8.60 74 293
14 2.7 3.6 160 235 26.00 9.3 8.60 68 181
14 2.7 3.6 180 245 26.00 9.3 8.60 152 307
14 2.7 3.6 182 320 26.00 9.3 8.60 45 167
14 2.7 8.6 231 325 20.00 6.0 6.10 221 259
14 2.7 8.6 171 207 20.00 6.0 6.10 238 277
14 2.7 8.6 237 283 20.00 6.0 6.10 224 296
14 2.7 8.6 178 270 20.00 6.0 6.10 281 333
14 9.3 3.6 159 240 12.71 6.0 6.10 222 268
14 9.3 3.6 234 349 12.71 6.0 6.10 197 289
14 9.3 3.6 163 229 12.71 6.0 6.10 279 341
14 9.3 3.6 295 385 12.71 6.0 6.10 294 350
14 9.3 8.6 18 314 27.29 6.0 6.10 46 230
14 9.3 8.6 97 298 27.29 6.0 6.10 243 370
14 9.3 8.6 214 297 27.29 6.0 6.10 62 214
14 9.3 8.6 74 244 27.29 6.0 6.10 138 265
26 2.7 3.6 5 217 20.00 2.0 6.10 20 230
26 2.7 3.6 2 243 20.00 2.0 6.10 11 175
26 2.7 3.6 5 316 20.00 2.0 6.10 10 233
26 2.7 3.6 3 224 20.00 2.0 6.10 7 236
26 2.7 8.6 143 292 20.00 10.0 6.10 130 389
26 2.7 8.6 159 301 20.00 10.0 6.10 119 226
26 2.7 8.6 186 316 20.00 10.0 6.10 98 247
26 2.7 8.6 138 264 20.00 10.0 6.10 122 292
26 9.3 3.6 19 262 20.00 6.0 3.08 187 293
26 9.3 3.6 36 277 20.00 6.0 3.08 168 258
26 9.3 3.6 18 263 20.00 6.0 3.08 214 271
26 9.3 3.6 44 290 20.00 6.0 3.08 179 220

R Output — Logistic Regression Model

Call:
glm(formula = cbind(hatch, total - hatch) ~ salin * temp + temp *
02 + salin * 02, family = binomial)

Deviance Residuals:
Min 10  Median 30 Max
-17.929 -5.575 -1.081 5.144  14.775

Coefficients:
Estimate Std. Error z value Pr(>|z|)

salin:temp 0.009308
temp:02 -0.043843

.001277  7.288 3.15e-13 *#*%
.003054 -14.355 < 2e-16 **%

(Intercept) 5.339730 0.279098 19.132 < 2e-16 x%x
salin -0.388016  0.013975 -27.764 < 2e-16 %%
temp 0.083883  0.030418 2.758 0.005821 **
02 -0.127545 0.035243 -3.619 0.000296 **x
0
0
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salin:02 0.028164 0.001603 17.571 < 2e-16 #**x*
Signif. codes: @ '**x' 0.001 '*x' 0.01 'x' .05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8209.9 on 75 degrees of freedom
Residual deviance: 4308.2 on 69 degrees of freedom
AIC: 4746

Number of Fisher Scoring iterations: 5

Logistic Regression Model
* All 2-way interaction terms are statistically significant (before ad hoc adjustment).
* The 3-way interaction term is not statistically significant (model not shown).

¢ Ad Hoc Method:
D 4308.2

= = 62.44.
n—op 69

b=

* Examine the significance the salin: temp interaction term:

seadj(Ba) = \/; se(fs) = v/62.44(0.001277) = 0.01009072.

Hy: B4 = 0 versus Hy: B4 # 0:

p=2P(Z> WBa=0l) _ 2P(Z > 0.9224) = 0.356.
Seadj(5a)

* The salin:temp interaction term is no longer statistically significant.

R Output — Beta Binomial Regression Model

Call:
glm(formula = cbind(hatch, total - hatch) ~ salin * temp + temp *
02 + salin * 02, family = binomial, weights = disp.weights)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.40644 -0.68571 0.01133 0.64835 1.83682

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.645924 2.050995 2.753 0.00591 **
salin -0.421677 0.105007 -4.016 5.93e-05 **%
temp 0.152677 ©.228123 0.669 0.50332

02 -0.223837 0.264152 -0.847 0.39678
salin:temp 0.008644 ©0.009475 ©0.912 0.36162
temp:02 -0.049173  0.022930 -2.144 0.03200 *
salin:02 0.034040 ©0.012323 2.762 0.00574 *x%
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Signif. codes: @ '**x' 0.001 'xx' 0.01 'x' 9.05 '.'

0.1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 141.76 on 75 degrees of freedom
Residual deviance: 75.03 on 69 degrees of freedom

AIC: 96.17

Number of Fisher Scoring iterations: 5

Beta Binomial Regression Model

* The salin:temp interaction term is not statistically significant.

* Note §3;’s from this model still have log(OR) interpretations.

* The dispersion parameter is p = 0.198 (correlation coefficient).

[

[

1
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* Test for overdispersion using a Deviance Test: Hy: p = 0 (Binomial) versus Hy: p # 0 (Beta-Binomial):

AD = Dy — D4 = 4302.8 — 75.03 = 4227.77.
p=P(x} > 4227.77) < 0.001.

Therefore, we reject the null hypothesis of no overdispersion.

R Output — Beta Binomial 2 Regression Model

Call:

glm(formula = cbind(hatch, total - hatch) ~ temp * 02 + salin *

02, family = binomial, weights = disp.weights)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.41745 -0.70916 -0.01631 0.65327 1.81255

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.69472 1.74939 2.684 0.00728
temp 0.30839 0.15378 2.005 0.04492
02 -0.24170 0.26184 -0.923 0.35595
salin -0.36705 0.08472 -4.333 1.47e-05
temp:02 -0.04647 0.02272 -2.046 0.04081
02:salin 0.03388 0.01231 2.752 ©.00593

Signif. codes: @ 'x*x' 0.001 '*x' 0.01 'x' 0.05

**

*k*k

)%

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 141.681 on 75 degrees of freedom
Residual deviance: 75.824 on 70 degrees of freedom

AIC: 94.961

Number of Fisher Scoring iterations: 5



CONTENTS

Residual Plots for Binomial and Beta-Binomial Models
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Deviance Residuals
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Binomial Overdispersion Wrap-Up

Beta—Binomial Model
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¢ We would select betabinom2 model as our final model.

Interpretation of /s is as in logistic regression (log(OR)).

Here, we had no problems fitting the Beta Binomial models.

May not always be the case.

Chapter 5: introduction to Quasi Likelihood (not covered).

Deviance Residuals
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Beta—Binomial2 Model
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— Relaxes parametric assumptions (Binomial, Poisson, Beta Binomial, Negative Binomial, Exponential,

Gamma, etc).

— Can be used in settings with overdispersion.
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